Skip to main content
  • Book
  • © 2019

CO2-Reservoir Oil Miscibility

Experimental and Non-experimental Characterization and Determination Approaches

Authors:

  • Brings together recent advances in characterizing CO2-oil miscibility in one volume
  • Equips readers with the necessary knowledge to choose appropriate minimum miscibility pressure determination methods
  • Clarifies the difference between characterization methods, and their advantages and limitations

Part of the book series: SpringerBriefs in Petroleum Geoscience & Engineering (BRIEFSPGE)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (5 chapters)

  1. Front Matter

    Pages i-xvi
  2. Experimental Approaches

    • Dayanand Saini
    Pages 37-65
  3. Non-experimental Approaches

    • Dayanand Saini
    Pages 67-85
  4. Recent Advancements

    • Dayanand Saini
    Pages 87-104

About this book

This SpringerBrief critically examines the latest experimental and non-experimental approaches used for the fast and reliable characterization and determination of CO2-reservoir oil miscibility in terms of the minimum miscibility pressure (MMP).

This book serves as a one-stop source for developing an enhanced understanding of these available methods, and specifically documents, analyses, and evaluates their suitability and robustness for depicting and characterizing the phenomenon of CO2-reservoir oil miscibility in a fast and cost-effective manner. Such information can greatly assist a project team in selecting an appropriate MMP determination method as per the project’s need at a given project’s stage, be that screening, design, or implementation.

CO2-Reservoir Oil Miscibility: Experiential and Non-Experimental Characterization and Determination Approaches will be of interest to petroleum science and engineering professionals, researchers, and undergraduate and graduate students engaged in CO2 enhanced oil recovery (EOR) and/or simultaneous CO2-EOR and storage projects and related research. It may also be of interest to engineering and management professionals within the petroleum industry who have responsibility for implementing CO2-EOR projects.

Authors and Affiliations

  • Department of Physics and Engineering, California State University, Bakersfield, USA

    Dayanand Saini

About the author

Dr Dayanand Saini is an Associate Professor of Petroleum Engineering at the California State University, Bakersfield (CSUB), California, USA, where, apart from teaching various core engineering and petroleum engineering electives, he is one of the principal investigators for five year-long National Science Foundation (NSF) research project focused on investigating the feasibility of CO2 enhanced oil recovery (EOR) process in depleted Californian oil and gas fields and using CO2 injection as drive mechanism to produce formation water for beneficial reuses. He is also a recipient of a planning grant awarded by the U.S. Department of Energy (DOE) to a consortium including CSUB, Electric Power Research Institute (EPRI), and Lawrence Berkeley National Laboratory (LBNL) for their project entitled “California CO2 Storage Assurance Facility Enterprise (C2SAFE)”. Dr Saini has published more than a dozen technical articles in his areasof expertise. He is also the author of the newly published book entitled “Geologic CO2 Storage: Synergy Between EOR and Storage”. He has presented numerous presentations at national and international technical conferences, served as a grant reviewer for American Chemical Society (ACS), and reviewed book proposals for major publishers. He serves on the editorial board of several technical journals and reviews articles for more than half a dozen premium scientific journals.


Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access