Study Week: Selected textbooks only 14.99 each—eBooks & softcovers on sale! Shop now >>

Springer Theses

Piezoresistive Effect of p-Type Single Crystalline 3C-SiC

Silicon Carbide Mechanical Sensors for Harsh Environments

Authors: Phan, Hoang-Phuong

Free Preview
  • Nominated as an outstanding PhD thesis by Griffith University, Queensland, Australia
  • Demonstrates the potential of the 3C-SiC polytype for microelectromechanical applications, especially in harsh conditions such as deep well drilling
  • Includes novel results on SiC nanowires, which are also shown to be suited to mechanical sensing applications
see more benefits

Buy this book

eBook 93,08 €
price for Spain (gross)
  • ISBN 978-3-319-55544-7
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 124,79 €
price for Spain (gross)
  • ISBN 978-3-319-55543-0
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
  • The final prices may differ from the prices shown due to specifics of VAT rules
Softcover 114,39 €
price for Spain (gross)
  • ISBN 978-3-319-85690-2
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
  • The final prices may differ from the prices shown due to specifics of VAT rules
About this book

This book addresses the piezoresistance in p-type 3C-SiC, which it investigates using experimental characterization and theoretical analysis. The gauge factor, the piezoresistive coefficients in two-terminal and four-terminal resistors, the comparison between single crystalline and nanocrystalline SiC, along with the temperature dependence of the piezoresistive effect in p-type 3C-SiC are also discussed. 
Silicon carbide (SiC) is an excellent material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical properties and extreme chemical inertness. Among the numerous polytypes of SiC, the cubic single crystal, which is also well known as 3C-SiC, is the most promising platform for microelectromechanical (MEMS) applications, as it can be epitaxially grown on an Si substrate with diameters of up to several hundred millimeters. This feature makes 3C-SiC compatible with the conventional Si-based micro/nano processing and also cuts down the cost of SiC wafers. 
The investigation into the piezoresistive effect in 3C-SiC is of significant interest for the development of mechanical transducers such as pressure sensors and strain sensors used for controlling combustion and deep well drilling. Although a number of studies have focused on the piezoresistive effect in n-type 3C-SiC, 4H-SiC and 6H-SiC, comparatively little attention has been paid to piezoresistance in p-type 3C-SiC. 
In addition, the book investigates the piezoresistive effect of top-down fabricated SiC nanowires, revealing a high degree of sensitivity in nanowires employing an innovative nano strain-amplifier. The large gauge factors of the p-type 3C-SiC at both room temperature and high temperatures found here indicate that this polytype could be suitable for the development of mechanical sensing devices operating in harsh environments with high temperatures.

About the authors

Dr. Hoang-Phuong Phan received his B.Eng. and M.Eng. from The University of Tokyo, Japan in 2011 and 2013, and his PhD from the Queensland Micro and Nano Technology Centre at Gri_th University, Australia in 2016. Since 2016, he has been a research fellow at the Queensland Micro- and Nanotechnology Centre. He was a visiting scholar at the Advanced Institute of Science and Technology (AIST), and Aichi Institute of Technology (AIT) both in Japan. His research interests include Micro Electro-Mechanical Systems, advanced materials, physics of semiconductors, and nanotechnologies. Dr. Phan was awarded the Japanese Government Scholarship (MEXT) for undergraduate and postgraduate studies from 2006 to 2013, and the GUPRS and GUPS scholarships from Gri_th from 2013 to 2016. Dr. Phan is currently working on the development of Integrated Cooling Technologies (IceTech) for SiC power devices funded by Australian Research Council (ARCLP150100153) with Prof. Nam-Trung Nguyen's group at Queensland Micro and Nanotechnology Centre.

Table of contents (7 chapters)

Table of contents (7 chapters)

Buy this book

eBook 93,08 €
price for Spain (gross)
  • ISBN 978-3-319-55544-7
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 124,79 €
price for Spain (gross)
  • ISBN 978-3-319-55543-0
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
  • The final prices may differ from the prices shown due to specifics of VAT rules
Softcover 114,39 €
price for Spain (gross)
  • ISBN 978-3-319-85690-2
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • Usually ready to be dispatched within 3 to 5 business days, if in stock
  • The final prices may differ from the prices shown due to specifics of VAT rules
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Piezoresistive Effect of p-Type Single Crystalline 3C-SiC
Book Subtitle
Silicon Carbide Mechanical Sensors for Harsh Environments
Authors
Series Title
Springer Theses
Copyright
2017
Publisher
Springer International Publishing
Copyright Holder
Springer International Publishing AG
eBook ISBN
978-3-319-55544-7
DOI
10.1007/978-3-319-55544-7
Hardcover ISBN
978-3-319-55543-0
Softcover ISBN
978-3-319-85690-2
Series ISSN
2190-5053
Edition Number
1
Number of Pages
XXI, 146
Number of Illustrations
91 b/w illustrations, 3 illustrations in colour
Topics