Study Week: Selected textbooks only 14.99 each—eBooks & softcovers on sale! Shop now >>

Tissue Engineering and Regeneration
cover

Vascularization for Tissue Engineering and Regenerative Medicine

Editors: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (Eds.)

  • Discusses both fundamental and cutting-edge research
  • Includes contributions from the TERMIS community
  • Written by international experts in the field
see more benefits

Buy this book

eReference 427,99 €
price for Spain (gross)
  • The eBook version of this title will be available soon
  • Due: June 17, 2021
  • ISBN 978-3-319-54586-8
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
Print + eBook 623,99 €
price for Spain (gross)
  • Currently this title cannot be preordered through the webshop. Please contact our Customer Service by e-mail (Customerservice@springernature.com) or via phone: (+49 6221 3450) to preorder.
  • Due: June 17, 2021
  • ISBN 978-3-319-54585-1
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • The final prices may differ from the prices shown due to specifics of VAT rules
Print 415,99 €
price for Spain (gross)
  • Due: June 17, 2021
  • ISBN 978-3-319-54584-4
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • The final prices may differ from the prices shown due to specifics of VAT rules
About this book

This reference work presents the basic principles of angiogenesis induction, including the roles of signaling factors such as hypoxia-inducible factors, biophysical stimulation and angiogenic cells. The book also covers lymphogenesis induction. Both the established fundamentals in the field as well as new trends in the vascularization of engineered tissues are discussed. These include pre-vascularization strategies using preparation of channeled scaffolds and preparation of decellularized blood vessel trees, approaches to inducing formation of microvasculature and approaches to inducing the growth of vascular networks. The authors expand on these concepts with current studies of dual-level approaches to engineer vascularized tissue composites. The book concludes with a discussion of current clinical approaches and the use of vascular grafts in the context of providing clinical practice with new tissue engineering strategies.

About the authors

Wolfgang Holnthoner obtained both his M.Sc. in 180 microbiology and genetics and his Ph.D. in molecular 181 biology from the University of Vienna, Austria. For 182 more than 20 years he has been working on endothelial 183 cells, both from blood and lymphatic vessel origin. After 184 his postdoctoral training with Kari Alitalo at the Uni185 versity of Helsinki, Finland, where he has been explor186 ing signal transduction in lymphatic endothelial cells, 187 he started at the Ludwig-Boltzmann-Institute for 188 Experimental and Clinical Traumatology to work on 189 strategies for pre-vascularization of tissue-engineered 190 constructs. He is interested in the basic functions of 191 endothelial cells in vasculogenesis, angiogenesis, and 192 lymphangiogenesis. His group’s primary focus is the 193 regeneration/engineering of microvascular structures. 194 To this aim, he employs co-culturing primary endothe195 lial cells with supporting cell types to achieve functional xiii 196 oxygen and nutrient support of tissues. Dr. Holnthoner 197 uses the physiological and biocompatible scaffold fibrin 198 to provide cells the necessary 3D environment for 199 microvascularization. In addition, his research involves 200 the integration of lymphatic vessels, since they are the 201 ones that transport the interstitial fluid in tissues back to 202 the blood circulation, and without them, human life 203 would be inconceivable. Moreover, he strives to explore 204 the emerging role of extracellular vesicles (EV) in 205 intercellular communication. These efforts contribute 206 to the development of therapies aimed for regeneration 207 208 of diseased tissues.

Andrea Banfi directs the Cell and Gene Therapy research group at the University Hospital of Basel, Switzerland. He previously worked in Genova (Italy) and Stanford (CA, USA). His research focuses on: 1) understanding the basic principles governing the growth of blood vessels, particularly the molecular crosstalk between endothelium, mural cells and inflammatory monocytes, in order to identify druggable targets for therapeutic vascular growth; and 2) translating these concepts into novel regenerative medicine approaches, particularly to generate vascularized tissue-engineered grafts and to treat ischemic diseases.

James Kirkpatrick has a triple doctorate in science and medicine (M.D., Ph.D., D.Sc.) from the Queen’s University of Belfast (N. Ireland) and was chairman and professor of pathology at the University Medical Center of the Johannes Gutenberg University (JGU) in Mainz from 1993 to 2015. His prior academic appointments were in pathology at the University of Ulm (1980– 1985), Manchester University, UK (1985–1987), and RWTH (University of Technology), Aachen (1987– 1993). He is a fellow of the Royal College of Pathologists (FRCPath), London (since 1997), and has honorary and visiting professorships in Sweden, China, Singapore, and Cuba. Currently, he is distinguished visiting fellow at the University of Cambridge, UK, and distinguished professor at the Johann Wolfgang Goethe University in Frankfurt, where his current research is being carried out. His principal research interests are in life science aspects of biomaterials in tissue engineering and regenerative medicine, with special focus on human co-culture systems to study vascularization. A special methodological emphasis in his research over the past 30 years has been the development of in vitro cellular systems which have complexity well beyond the simple monocellular system. Thus, how non-vascular cells contribute to the proliferation, differentiation, and architectural organization of microvessel-like structures has xiv About the Editors been a particular focus. For example, his group has pioneered studies which show that cellular crosstalk between osteoblasts or fibroblasts and endothelial cells direct microvessel formation on open porous 3D scaffolds of all material classes (metals, ceramics, and polymers). Kirkpatrick’s research activity has been supported over many years by the German Research Foundation (DFG), the Federal Ministry of Education & Research (BMBF), The German-Israeli Foundation (GIF), and the European Commission (EC).

Heinz Redl Ludwig Boltzmann Institute for Clinicaland Experimental Traumatology.Heinz Redl has a background in biochemistry, withalmost 40 years’ experience in trauma and regenerativemedicine research. He was the director of the LudwigBoltzmann Institute of Experimental and ClinicalTraumatology within the main trauma research centerof AUVA (1998–2019), representing seven trauma andfour rehabilitation centers, and holds the position ofassociate professor at the Technical University Vienna,Institute for Chemical Engineering, plus adjunct professorat the University of Texas Medical Branch at Galvestonand at the Medical University of Vienna. Herecently started a new project “Senescence and HealingofWounds.” Prof. Redl coordinates the Austrian Clusterfor Tissue Regeneration since 2006, which includes28 work groups from academia with multiple researchtargets and 12 spin-off groups. To further enhanceindustry cooperation, he founded in 1998 the companyTrauma Care Consult, which is specialized on preclinicalresearch and assists products registration at FDA andEMA. In 2014, he co-founded the spin-off companyLiporegena and in 2017 MorphoMed. Prof. Redl organizedmany conferences in the field of regenerativemedicine such as the World Congress for Tissue Engineeringand Regenerative Medicine (TERMIS 2012)and many annual workshops (Winterschool Radstadtand Wiggers Bernhard series). He holds positions inseveral societies, such as past chair of TERMIS-EU,and was awarded “International Fellow of Tissue Engineering& Tissue Regeneration” in 2015. Prof. Redl isAbout the Editors xveditor-in-chief of the updatable book series Springer/TERMIS Tissue Engineering and Regeneration. Hisexpertise includes experience in different fields of tissueregeneration; he is co-developer of the fibrin sealantsystem (>40 years) and developer of surgical devicesin current clinical use and has many collaboration projectswith major industry partners.

Buy this book

eReference 427,99 €
price for Spain (gross)
  • The eBook version of this title will be available soon
  • Due: June 17, 2021
  • ISBN 978-3-319-54586-8
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
Print + eBook 623,99 €
price for Spain (gross)
  • Currently this title cannot be preordered through the webshop. Please contact our Customer Service by e-mail (Customerservice@springernature.com) or via phone: (+49 6221 3450) to preorder.
  • Due: June 17, 2021
  • ISBN 978-3-319-54585-1
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • The final prices may differ from the prices shown due to specifics of VAT rules
Print 415,99 €
price for Spain (gross)
  • Due: June 17, 2021
  • ISBN 978-3-319-54584-4
  • Free shipping for individuals worldwide
  • Institutional customers should get in touch with their account manager
  • Covid-19 shipping restrictions
  • The final prices may differ from the prices shown due to specifics of VAT rules
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Vascularization for Tissue Engineering and Regenerative Medicine
Editors
  • Wolfgang Holnthoner
  • Andrea Banfi
  • James Kirkpatrick
  • Heinz Redl
Series Title
Tissue Engineering and Regeneration
Copyright
2021
Publisher
Springer International Publishing
Copyright Holder
Springer Nature Switzerland AG
eReference ISBN
978-3-319-54586-8
Print + eBook ISBN
978-3-319-54585-1
Print ISBN
978-3-319-54584-4
Series ISSN
2731-0558
Edition Number
1
Number of Pages
XXI, 565
Number of Illustrations
6 b/w illustrations, 86 illustrations in colour
Topics