Skip to main content

Microfluidic Fuel Cells and Batteries

  • Book
  • © 2014

Overview

  • First book in the field of microfluidic fuel cells and batteries
  • Outlines key technological challenges and solutions developed in the field of microfluidic fuel cells and batteries
  • Covers general principles, fundamentals, and a future outlook regarding applications of microfluidic fuel cells and batteries
  • Includes supplementary material: sn.pub/extras

Part of the book series: SpringerBriefs in Energy (BRIEFSENERGY)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is for this book to be a ‘one-stop shop’ for current and prospective researchers in the general area of membraneless, microfluidic electrochemical energy conversion. As the overall goal of the book is to provide a comprehensive resource for both research and technology development, it features extensive descriptions of the underlying fundamental theory, fabrication methods, and cell design principles, as well as a thorough review of previous contributions in this field and a future outlook with recommendations for further work. It is hoped that the content will entice and enable new research groups and engineers to rapidly gain traction in their own laboratories towards the development of next generation microfluidic electrochemical cells.

Authors and Affiliations

  • Fuel Cell Research Laboratory School of Mechatronic Systems Engineerin, Simon Fraser University, Surrey, Canada

    Erik Kjeang

About the author

Dr. Erik Kjeang is an Assistant Professor in Mechatronic Systems Engineering and Director of the Fuel Cell Research Laboratory at Simon Fraser University (SFU) in Vancouver, Canada. Dr. Kjeang holds a Ph.D. in Mechanical Engineering from the University of Victoria (UVic), Canada and an M.Sc. in Energy Engineering from Umea University, Sweden. His research program at SFU encompasses the general area of sustainable energy technologies with specialization in electrochemical power generation. Prior to joining SFU, Dr. Kjeang worked as a research engineer at Ballard Power Systems, a world leader in hydrogen PEM fuel cell development and manufacturing. He is an established expert in fuel cell science and technology and has authored more than 100 peer-reviewed publications, developed patented technology, and given several invited lectures at major international conferences in this field. His feature research on microfluidic fuel cell technology was awarded with the prestigious Governor General's Gold Medal for outstanding dissertation and numerous other awards and fellowships. Dr. Kjeang is currently the Principal Investigator of a $12M Automotive Partnership Canada supported university-industry collaborative research project on heavy duty bus fuel cells involving Ballard, SFU, and UVic. The fundamental understanding and new technologies developed by his team has improved the performance and durability of Ballard’s fuel cell systems and reduced the manufacturing cost.

Bibliographic Information

Publish with us