Skip to main content
Book cover

Evolution from a Thermodynamic Perspective

Implications for Species Conservation and Agricultural Sustainability

  • Book
  • © 2022

Overview

  • Evolution is a battle between energy transformations that increase complexity and entropy that degrades complexity
  • Species and ecosystems evolve simultaneously and reciprocally through increases in energy flow and nutrient feedback
  • Species diversity and sustainability of agriculture depend on maintenance of trophic dynamics and nutrient feedback

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (29 chapters)

  1. Part I

  2. Part II

Keywords

About this book

Survival of the fittest” is a tautology, because those that are “fit” are the ones that survive, but to survive, a species must be “fit”. Modern evolutionary theory avoids the problem by defining fitness as reproductive success, but the complexity of life that we see today could not have evolved based on selection that favors only reproductive ability. There is nothing inherent in reproductive success alone that could result in higher forms of life. Evolution from a Thermodynamic Perspective presents a non-circular definition of fitness and a thermodynamic definition of evolution. Fitness means maximization of power output, necessary to survive in a competitive world. Evolution is the “storage of entropy”. “Entropy storage” means that solar energy, instead of dissipating as heat in the Earth, is stored in the structure of living organisms and ecosystems. Part one explains this in terms comprehensible to a scientific audience beyond biophysicists and ecosystem modelers. Part two applies thermodynamic theory in non-esoteric language to sustainability of agriculture, and to conservation of endangered species. While natural systems are stabilized by feedback, agricultural systems remain in a mode of perpetual growth, pressured by balance of trade and by a swelling population. The constraints imposed by thermodynamic laws are being increasingly felt as economic expansion destabilizes resource systems on which expansion depends.

Authors and Affiliations

  • Odum School of Ecology, University of Georgia, Athens, USA

    Carl F Jordan

About the author

During the 1940s and early 50s, Carl F. Jordan spent boyhood summers at his uncle’s hunting and fishing lodge in northern Maine. He enjoyed the wilderness there, especially canoe trips on the Allagash and Penobscot rivers, and deplored the  cutting of the spruce-fir forests by the pulp and paper companies. In 1953, he enrolled at the University of Michigan and majored in forestry, because he believed that it could help him conserve the forests, but in those days, forestry was all about “getting out the cut”.

After he acquired his Ph.D. in plant ecology from Rutgers Univ.in 1966, he joined H.T. Odum in an Atomic Energy Commission project in Puerto Rico, looking at the dynamics of radioactive isotopes in the rain forest following the world-wide atmospheric testing of nuclear weapons.  In 1969, Carl moved to Argonne National Laboratory where he continued studies of radioactive pollution from nuclear power plants.  In 1974,he had the opportunity to lead an ecology project for the University of Georgia to determine energy flow and nutrient cycling in the Amazon Region of Venezuela. In 1980, Carl returned to the School of Ecology in Athens Georgia while continuing tropical research in Brazil, Costa Rica, Mexico and Thailand.

In 1993, Carl acquired a farm near Athens Georgia that had once been part of a pre-Civil War cotton plantation and began research on more sustainable ways of farming. He originated the first University course in Georgia on organic farming, and opened the farm to tours and classes interested in sustainable agriculture. Carl retired as Professor Emeritus in 2009, and took his new freedom to begin research for Evolution from a Thermodynamic Perspective, and recently to develop a forum where the controversies raised in that book could be discussed. The forum is available at the website Thermodynamic-Evolution.org



Bibliographic Information

  • Book Title: Evolution from a Thermodynamic Perspective

  • Book Subtitle: Implications for Species Conservation and Agricultural Sustainability

  • Authors: Carl F Jordan

  • DOI: https://doi.org/10.1007/978-3-030-85186-6

  • Publisher: Springer Cham

  • eBook Packages: Biomedical and Life Sciences, Biomedical and Life Sciences (R0)

  • Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

  • Hardcover ISBN: 978-3-030-85185-9Published: 27 November 2021

  • Softcover ISBN: 978-3-030-85188-0Published: 28 November 2022

  • eBook ISBN: 978-3-030-85186-6Published: 26 November 2021

  • Edition Number: 1

  • Number of Pages: XXVI, 384

  • Number of Illustrations: 1 b/w illustrations

  • Topics: Ecology, Agriculture, Evolutionary Biology, Thermodynamics, Conservation Biology/Ecology

Publish with us