Skip to main content
Book cover

A First Course on Symmetry, Special Relativity and Quantum Mechanics

The Foundations of Physics

  • Textbook
  • © 2020

Overview

  • Provides conceptual and practical knowledge of symmetry, with emphasis on its vital role in physics
  • Each chapter starts with a summary of anticipated conceptual and practical learning outcomes
  • Provides intensive treatments of advanced topics such as Noether’s Theorem, including applications, a simple variational proof and emphasis on its universal importance, and general relativity
  • Contains a detailed chapter on fundamental issues in quantum mechanics, including entanglement, Bell's Theorem and quantum computing
  • Contains numerous thought provoking and sometimes humorous examples and exercises, with a solutions manual for instructors
  • Request lecturer material: sn.pub/lecturer-material

Part of the book series: Undergraduate Lecture Notes in Physics (ULNP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (15 chapters)

Keywords

About this book

This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect  is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics.

Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing.

Throughout the text, everyopportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. 

The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.



Authors and Affiliations

  • University of Winnipeg, Winnipeg, Canada

    Gabor Kunstatter

  • University of Lethbridge, Lethbridge, Canada

    Saurya Das

About the authors

Gabor Kunstatter is a theoretical physicist who has worked on general relativity, gauge theory quantization, finite temperature quantum field theory, quantum computing and quantum gravity. His current research focuses on the quantum mechanics of black holes, quantum information and effective theories for non-singular black hole evaporation and evaporation. Dr. Kunstatter is Professor Emeritus at the University of Winnipeg and Adjunct Professor at the University of Victoria, Simon Fraser University and the University of Manitoba. He has been a visiting scientist at a variety of institutions, including M.I.T., Université de Paris (Orsay), UNAM (Mexico), University of Nottingham and CECS (Chile). Dr. Kunstatter has also served as the President of the Canadian Association of Physicists and as Dean of Science at the University of Winnipeg.

Saurya Das is a theoretical physicist whose research areas include quantum gravity theory and phenomenology and cosmology. He hasworked on problems in black hole physics, testing signatures of quantum gravity in the laboratory and on dark matter and dark energy, on which he has published more than 80 papers. After doing postdoctoral research at the Pennsylvania State University and the Universities of Winnipeg and New Brunswick, Dr. Das joined the faculty the University of Lethbridge, Canada in 2003, where he is now a full professor.

 


Bibliographic Information

Publish with us