Simplicial Methods for Higher Categories
Segal-type Models of Weak n-Categories
Authors: Paoli, Simona
Free Preview- Postulates a model of weak n-categories using structures (called n-fold categories) with strictly associative compositions
- Encompasses intuitive introductions to new concepts, which would otherwise remain very technical
- Provides diagrammatic summaries and road-maps to guide the reader
- Offers a very thorough introduction to multi-simplicial techniques, including figures illustrating geometric interpretations in low dimensions
Buy this book
- About this book
-
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic.
While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory.As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.
- About the authors
-
Simona Paoli has been active in the field of higher category theory for fifteen years and she has a very strong track record of innovation in this area. She is an expert in the use of multi-simplicial techniques in higher category theory and in applications to homotopy theory. She collaborated extensively with leading researchers both in category theory and in algebraic topology.
- Reviews
-
“This book is a research monograph and is primarily aimed primarily at professionals and advanced graduate students working in topology or category theory. It would also be useful to those working in theoretical physics or algebraic geometry who use higher category methods. … The author’s solution to the homotopy hypothesis is appealing as well as geometrically and categorically insightful.” (MAA Reviews, April 7, 2020)
- Table of contents (13 chapters)
-
-
An Introduction to Higher Categories
Pages 3-16
-
Multi-Simplicial Techniques
Pages 17-47
-
An Introduction to the Three Segal-Type Models
Pages 49-70
-
Techniques from 2-Category Theory
Pages 71-86
-
Homotopically Discrete n-Fold Categories
Pages 91-106
-
Table of contents (13 chapters)
Recommended for you

Bibliographic Information
- Bibliographic Information
-
- Book Title
- Simplicial Methods for Higher Categories
- Book Subtitle
- Segal-type Models of Weak n-Categories
- Authors
-
- Simona Paoli
- Series Title
- Algebra and Applications
- Series Volume
- 26
- Copyright
- 2019
- Publisher
- Springer International Publishing
- Copyright Holder
- Springer Nature Switzerland AG
- eBook ISBN
- 978-3-030-05674-2
- DOI
- 10.1007/978-3-030-05674-2
- Hardcover ISBN
- 978-3-030-05673-5
- Series ISSN
- 1572-5553
- Edition Number
- 1
- Number of Pages
- XXII, 343
- Number of Illustrations
- 250 b/w illustrations, 12 illustrations in colour
- Topics