Skip to main content
Book cover

Handbook of Ceramic Composites

  • Book
  • © 2005

Overview

  • Detailed description of processing, properties, and applications for various ceramic composites are presented

  • Each chapter is focused on a specific composite system or a class of composites

  • The information in each chapter has been compiled by internationally renowned researchers in the field

  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (21 chapters)

  1. Ceramic Fibers

  2. Non-oxide/Non-oxide Composites

  3. Non-oxide/Oxide Composites

  4. Oxide/Oxide Composites

Keywords

About this book

Ceramic matrix composites (CMCs) are at the forefront of advanced materials technology because of their light weight, high strength and toughness, high temperature capabilities, and graceful failure under loading. During the last 25 years, tremendous progress has been made in the development and advancement of CMCs under various research programs funded by the U.S. Government agencies: National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and Department of Energy (DOE).

Ceramic composites are considered as enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, and space structures. CMCs would also find applications in advanced aerojet engines, stationary gas turbines for electrical power generation, heat exchangers, hot gas filters, radiant burners, heat treatment and materials growth furnaces, nuclear fusion reactors, automobiles, biological implants, etc. Other applications of CMCs are as machinery wear parts, cutting and forming tools, valve seals, high precision ball bearings for corrosive environments, and plungers for chemical pumps. Potential applications of various ceramic composites are described in individual chapters of the present handbook.

Handbook of Ceramic Composites is different from the other books available on this topic. Here, a ceramic composite system or a class of composites has been covered in a separate chapter, presenting a detailed description of processing, properties, and applications. Each chapter is written by internationally renowned researchers in the field. The handbook is organized into five sections: Ceramic Fibers, Non-oxide/Non-oxide Composites, Non-oxide/Oxide Composites, Oxide/Oxide Composites, and Glass and Glass-Ceramic Composites.

This handbook should be a valuable source of information for scientists, engineers, and technicians working in the field of CMCs, and also for designers to design parts and components for advanced engines, and various other industrial applications.

Editors and Affiliations

  • NASA Glenn Research Center, USA

    Narottam P. Bansal

About the editor

Dr. Narottam Bansal is a Senior Research Scientist in the Ceramics Branch, Materials and Structures Division, NASA Glenn Research Center, Cleveland, OH. After receiving his Ph. D. in 1973, he held post-doctoral research assignments in Canada and USA. He has carried out research in a number of areas: solid oxide fuel cells, thermal and environmental barrier coatings, fiber-reinforced ceramic matrix composites for high-temperature structural applications in turbine engines, high-temperature superconductors, sol-gel and combustion processing, refractory glass-ceramics, kinetics of phase transformations, IR-transmitting materials, electroanalytical techniques, ionic diffusion in melts. He has been team leader of a number of technical teams at NASA.

Dr. Bansal is a Fellow of the American Ceramic Society. He is recipient of NASA’s Medal for Exceptional Scientific Achievements, R & D 100 Award, Turning Goals into reality Award, and Hind Rattan Award. He has also received numerous Innovative Technology Development Awards and Tech Brief Awards from NASA and his biography has been included in more than 30 Who’s Who. So far, he has organized 31 International Symposia and edited 23 Conference proceedings. He is author/co-author of 4 books, 6 invited book chapters, 3 review articles, 8 NASA Tech Briefs, and 215 research papers. He has been awarded seven U.S. Patents, so far. Dr. Bansal has been a member of the Technical Committees of International Commission on Glass and International Union of Pure & Applied Chemistry. He has also served on the advisory boards of a number of international conferences.

Bibliographic Information

Publish with us