Skip to main content

Neural Network Perception for Mobile Robot Guidance

  • Book
  • © 1993

Overview

Part of the book series: The Springer International Series in Engineering and Computer Science (SECS, volume 239)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

Dean Pomerleau's trainable road tracker, ALVINN, is arguably the world's most famous neural net application. It currently holds the world's record for distance traveled by an autonomous robot without interruption: 21.2 miles along a highway, in traffic, at speedsofup to 55 miles per hour. Pomerleau's work has received worldwide attention, including articles in Business Week (March 2, 1992), Discover (July, 1992), and German and Japanese science magazines. It has been featured in two PBS series, "The Machine That Changed the World" and "By the Year 2000," and appeared in news segments on CNN, the Canadian news and entertainment program "Live It Up", and the Danish science program "Chaos". What makes ALVINN especially appealing is that it does not merely drive - it learns to drive, by watching a human driver for roughly five minutes. The training inputstothe neural networkare a video imageoftheroad ahead and thecurrentposition of the steering wheel. ALVINN has learned to drive on single lane, multi-lane, and unpaved roads. It rapidly adapts to other sensors: it learned to drive at night using laser reflectance imaging, and by using a laser rangefinder it learned to swerve to avoid obstacles and maintain a fixed distance from a row of parked cars. It has even learned to drive backwards.

Authors and Affiliations

  • Carnegie Mellon University, USA

    Dean A. Pomerleau

Bibliographic Information

Publish with us