Skip to main content
  • Book
  • © 2018

Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals

A Scanning Probe Microscopy Approach

Authors:

  • Nominated as an outstanding Ph.D.thesis by Lancaster University and University of Manchester, UK
  • Includes high-resolution computer-generated imagery (CGI) and diagrams to aid understanding and visualization of the research
  • Presents the unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials
  • Offers an in-depth theoretical analysis backed up with experimental data for a comprehensive overview of the current state of the art in applying scanning probe microscopy to study 2D materials
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

    Pages i-xxiii
  2. Introduction

    • Nicholas D. Kay
    Pages 1-6
  3. Background

    • Nicholas D. Kay
    Pages 7-36
  4. Materials and Methods

    • Nicholas D. Kay
    Pages 37-44
  5. Nanomechanical Phenomena

    • Nicholas D. Kay
    Pages 53-77
  6. Nanoelectromechanical Phenomena

    • Nicholas D. Kay
    Pages 79-99
  7. Further Work and Future Directions

    • Nicholas D. Kay
    Pages 101-106
  8. Conclusion

    • Nicholas D. Kay
    Pages 107-109
  9. Back Matter

    Pages 111-122

About this book

This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers’ understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University’s Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) – both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples’ subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.

Authors and Affiliations

  • National Physics Laboratory, Teddington, United Kingdom

    Nicholas D. Kay

About the author

Nicholas Kay spent the first part of his academic career at the Physics department at Lancaster University as a joint PhD student there and at the University of Manchester through the graphene centre for doctoral training. Here he was primarily interested with the nanomechanical and nanoelectromechanical properties of 2D materials, applying scanning probe microscopy but also later surface acoustic waves and optical techniques. After finishing at Lancaster University he took a position at the National Physical Laboratory where his research now focusses on optics. He still remains active in atomic force microscopy, 2D materials and nanomechanics and nanoelectromechanics.  

 

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access