Skip to main content

Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals

  • Book
  • © 2021

Overview

  • Nominated as an outstanding Ph.D. thesis by the Universidad Complutense de Madrid, Madrid, Spain
  • Provides basic research in a novel material based on silicon, which is later integrated into an industrial CMOS Image Sensor prototype
  • Presents a methodology to combine two fast, non-destructive and reliable techniques to quickly identify the fast melting and solidification regimes after a nanosecond laser process

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This thesis makes a significant contribution to the development of cheaper Si-based Infrared detectors, operating at room temperature. In particular, the work is focused in the integration of the Ti supersaturated Si material into a CMOS Image Sensor route, the technology of choice for imaging nowadays due to its low-cost and high resolution. First, the material is fabricated using ion implantation of Ti atoms at high concentrations. Afterwards, the crystallinity is recovered by means of a pulsed laser process. The material is used to fabricate planar photodiodes, which are later characterized using current-voltage and quantum efficiency measurements. The prototypes showed improved sub-bandgap responsivity up to 0.45 eV at room temperature. The work is further supported by a collaboration with STMicroelectronics, where the supersaturated material was integrated into CMOS-based sensors at industry level. The results show that Ti supersaturated Si is compatible in terms of contamination, process integration and uniformity. The devices showed similar performance to non-implanted devices in the visible region. This fact leaves the door open for further integration of supersaturated materials into CMOS Image Sensors.

Authors and Affiliations

  • Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain

    Daniel Montero Álvarez

About the author

Daniel Montero was born in Guadalajara (Spain) in 1990. His passion for nature and technology, inherited from his mother and father respectively, led him to pursue a Physics degree at Complutense University of Madrid. He later got at the same university a Masters Degree in Renewable energies, and finally the PhD in Physics with European and Cum Laude special mentions. Recently, he joined IMEC in Belgium to continue his professional career as R&D Engineer in Plasma Etch. 

Bibliographic Information

Publish with us