Skip to main content

Stochastic Optimal Control of Structures

  • Book
  • © 2019

Overview

  • Provides new perspectives on stochastic optimal control of engineering structures subjected to non-stationary and non-Gaussian excitations
  • Implements reliability-based stochastic optimal control of structures
  • Offers a three-level definition of optimal control policy, incorporating a multiple-step optimization of control modalities
  • Indicates an equivalent efficiency between linear controller and nonlinear controller in the utilization of parameter-optimization criteria for control gain
  • Presents experimental verification and practical applications of the proposed methods

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book proposes, for the first time, a basic formulation for structural control that takes into account the stochastic dynamics induced by engineering excitations in the nature of non-stationary and non-Gaussian processes. Further, it establishes the theory of and methods for stochastic optimal control of randomly-excited engineering structures in the context of probability density evolution methods, such as physically-based stochastic optimal (PSO) control. By logically integrating randomness into control gain, the book helps readers design elegant control systems, mitigate risks in civil engineering structures, and avoid the dilemmas posed by the methods predominantly applied in current practice, such as deterministic control and classical linear quadratic Gaussian (LQG) control associated with nominal white noises.

Reviews

“The book, containing many numerical examples and technical applications as well as many references, can be recommended especially to readers interested in optimal control of mechanical structures under stochastic uncertainty.” (Kurt Marti, zbMATH 1433.93002, 2020)

Authors and Affiliations

  • Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai, China

    Yongbo Peng

  • College of Civil Engineering, Tongji University, Shanghai, China

    Jie Li

About the authors

Yongbo Peng is a Professor at Shanghai Institute of Disaster Prevention and Relief, Tongji University, specializing in the area of stochastic dynamics and control of structures. He completed a joint Ph.D. program at University of Southern California during 2007-2009 and earned a Ph.D. in structural engineering at Tongji University in 2009. Since then he had been dedicated to investigating successful control strategies for stochastic dynamical systems. He has published one book and more than 80 peer-reviewed papers. Prof. Peng was admitted to the Shanghai Pujiang Talents Program in 2011, and was the nominated author of the National Excellent Doctoral Dissertation of China in 2013 and received the Award for Young Talents from the Chinese Society for Vibration Engineering’s Science & Technology in 2016. He is currently a member and the secretary general of the Chinese Society of Vibration Engineering’s Random Vibration Committee.

Jie Li is currently a Distinguished Professorat the College of Civil Engineering, Tongji University, specializing in earthquake engineering and stochastic mechanics of structures. Prof. Li received his Ph.D. in civil engineering from Tongji University in 1988, and an honorary doctorate in engineering from Aalborg University, Denmark in 2013. He was awarded the 2014 Alfred M. Freudenthal Medal by the ASCE. He has authored seven books and co-authored over 400 academic papers. Prof. Li is currently the President of the International Association for Structural Safety and Reliability (IASSAR), and the Director of the Board of the International Civil Engineering Risk and Reliability Association (CERRA). He is also the Vice-Chairman of the Chinese Society of Vibration Engineering and the Chairman of the Architectural Society of China’s Structural Computational Theory and Engineering Applications Committee. He is the Editor-in-Chief of the Journal of Tongji University (Natural Science Series) and serves on the editorial boards of 10 other international and Chinese academic journals.

Bibliographic Information

Publish with us