Skip to main content
Book cover

Phase Transformation in Metals

Mathematics, Theory and Practice

  • Textbook
  • © 2020

Overview

  • Reinforces concepts with example problems illustrating the application of thermodynamics and heat transfer techniques for solving complex solidification problems
  • Adopts an easy and succinct manner narrative style
  • Elucidates solidification shrinkage and gas porosity in casting defects
  • Describes analysis of cracks around a pore using linear elastic fracture mechanics (LEFM)
  • 7124 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

This textbook explains the physics of phase transformation and associated constraints from a metallurgical or materials science point of view, based on many topics including crystallography, mass transport by diffusion, thermodynamics, heat transfer and related temperature gradients, thermal deformation, and even fracture mechanics. The work presented emphasizes solidification and related analytical models based on heat transfer. This corresponds with the most fundamental physical event of continuous evolution of latent heat of fusion for directional or non-directional liquid-to-solid phase transformation at a specific interface with a certain geometrical shape, such as planar or curved front. Dr. Perez introduces mathematical and engineering approximation schemes for describing the phase transformation, mainly during solidification of pure metals and alloys. Giving clear definitions and explanations of theoretical concepts and full detail of derivation of formulae, this interdisciplinary volume is ideal for graduate and upper-level undergraduate students in applied science, and professionals in the metal making and surface reconstruction industries.



Authors and Affiliations

  • University of Puerto Rico, Mayaguez, Puerto Rico

    Nestor Perez

About the author

Dr. Nestor Perez is a Professor of Mechanical Engineering at the University of Puerto Rico. His academic interests include Metallurgy & Materials Engineering, Fracture Mechanics, Corrosion, and Thermodynamics.

Bibliographic Information

Publish with us