Skip to main content

Nonlinear System Identification

From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes

  • Textbook
  • © 2020

Overview

  • Self-contained, no other literature needed
  • Offers a user-oriented, comprehensive overview of fundamental principles to advanced methods
  • Provides explanations and terminology from an engineering perspective
  • Requires only a basic grasp of algebra and statistics
  • Employs one consistent notation system throughout all topics

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (31 chapters)

  1. Optimization

  2. Static Models

Keywords

About this book

This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. 

Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. 

In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.


Authors and Affiliations

  • University of Siegen, Netphen, Germany

    Oliver Nelles

About the author

Oliver Nelles was born in Frankfurt (Main), Germany, and got his Master’s and Ph.D. degree in Electrical Engineering and Automatic Control at the Technical University of Darmstadt. After being a Post-Doc at the Department of Mechanical Engineering at UC Berkeley he worked for Siemens VDO Automotive in Regensburg. During his five years in Regensburg he was project and group leader in the field of transmission control. Since 2004 he assumed a position as Professor for Automatic Control – Mechatronics at the University of Siegen. Oliver Nelles’ key research areas are: machine learning, system identification, nonlinear dynamic systems & control, design of experiments (DoE), fault diagnosis. 

 

Bibliographic Information

Publish with us