Skip to main content

Electromagnetic and Optical Pulse Propagation

Volume 2: Temporal Pulse Dynamics in Dispersive Attenuative Media

  • Book
  • © 2019

Overview

  • Gives detailed asymptotic description of pulsed wave fields in dielectrics, conductors, and semiconductors
  • Describes angular spectrum representation of pulsed radiation fields in linear, temporally dispersive media
  • Examines the controversial question of superluminal pulse propagation
  • Includes exercises and background material on asymptotic expansions of integrals

Part of the book series: Springer Series in Optical Sciences (SSOS, volume 225)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. 

Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media.

Volume 1 covers spectral representations in temporally dispersive media.




Authors and Affiliations

  • College of Engineering and Mathematical Sciences, University of Vermont, Burlington, USA

    Kurt E. Oughstun

About the author

Kurt Oughstun is a Professor of Electrical Engineering, Mathematics and Computer Science in the College of Engineering & Mathematics at the University of Vermont where he was University Scholar in the Basic and Applied Sciences. A graduate of The Institute of Optics at the University of Rochester, he is a Fellow of the Optical Society of America, a member of the European Optical Society and a member of the United States National Committee of the International Union of Radio Science. His research centers on electromagnetic and optical wave theory, asymptotic methods of analysis, and computational techniques. He has published extensively on his research in these areas in such journals as the Journal of the Optical Society of America A & B, Journal of the European Optical Society A, Physical Review A & E, Physical Review Letters, IEEE Proceedings, and Radio Science.

Bibliographic Information

Publish with us