Skip to main content
  • Book
  • © 2007

Interfacial Transport Phenomena

  • Revised and updated extensively from the previous edition
  • Discusses transport phenomena at common lines or three-phase lines of contact
  • Provides a comprehensive summary about the extensions of continuum mechanics to the nanoscale

Buy it now

Buying options

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

About this book

Transport phenomena is used here to describe momentuin, energy, mass, and entropy transfer [1, 2]. It includes thermodynamics, a special case of which is thermosiaiics. Interfacial transport phenomena refers to momentum, energy, mass, and entropy transfer within the immediate neighborhood of a phase interface, including the thermodynamics of the interface. In terms of qualitative physical observations, this is a very old field. Pliny the Elder (Gains Plinius Secundus, 23-79 A. D. ; Pliny [3]) described divers who released small quantities of oil from their mouths, in order to damp capillary ripples on the ocean surface and in this way provide more uniform lighting for their work. Similar stories were retold by Benjamin Franklin, who conducted experiments of his own in England [4]. In terms of analysis, this is a generally young field. Surface thermostat­ ics developed relatively early, starting with Gibbs [5] and continuing with important contributions by many others (see Chap. 4). Derjaguin and Lan­ dau [6] and Verwey and Overbeek [7] indicated how London-van der Waals and electrostatic double-layer forces were to be incorporated in continuum mechanics, now often referred to as DLVO theory. But prior to 1960, there were relatively few notable papers concerned with the analysis of dynamic systems. Two stand out in my mind. Boussinesq [8] recognized the surface stress tensor and proposed the constitutive equation that we now refer to as the Boussinesq surface fluid model (Sect. 4. 9. 5).

Reviews

From the reviews of the second edition:

"This book provides a solid fundamental and comprehensive presentation of the transport phenomena, pointing out the most important practical applications of the problems described. … is very well written and readable. Results of the exercises are given graphically and in tabular form. The book will be of interest and useful to a wide range of specialists working in the area of transport phenomena, and to advanced students of transport phenomena. … recommended as a text for seminars and courses, as well as for independent study." (Ioan Pop, Zentralblatt MATH, Vol. 1116 (18), 2007)

Authors and Affiliations

  • Department of Aerospace Engineering, Texas A&M University, College Station

    John C. Slattery

  • Department of Agrotechnology and Food Science, Wageningen University, The Netherlands

    Leonard Sagis

  • LG Chem, Research Park, South Korea

    Eun-Suok Oh

Bibliographic Information

Buy it now

Buying options

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access