Skip to main content
Birkhäuser
Book cover

Dynamical Systems with Applications using Python

  • Textbook
  • © 2018

Overview

  • Designed for a broad audience of students in applied mathematics, physics, and engineering
  • Represents dynamical systems with popular Python libraries like sympy, numpy, and matplotlib
  • Explores a variety of advanced topics in dynamical systems, like neural networks, fractals, and nonlinear optics, at an undergraduate level
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (23 chapters)

Keywords

About this book

This textbook provides a broad introduction to continuous and discrete dynamical systems. With its hands-on approach, the text leads the reader from basic theory to recently published research material in nonlinear ordinary differential equations, nonlinear optics, multifractals, neural networks, and binary oscillator computing. Dynamical Systems with Applications Using Python takes advantage of Python’s extensive visualization, simulation, and algorithmic tools to study those topics in nonlinear dynamical systems through numerical algorithms and generated diagrams.


After a tutorial introduction to Python, the first part of the book deals with continuous systems using differential equations, including both ordinary and delay differential equations. The second part of the book deals with discrete dynamical systems and progresses to the study of both continuous and discrete systems in contexts like chaos control and synchronization, neural networks, and binary oscillator computing. These later sections are useful reference material for undergraduate student projects. The book is rounded off with example coursework to challenge students’ programming abilities and Python-based exam questions. 


This book will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a range of disciplines, such as biology, chemistry, computing, economics, and physics. Since it provides a survey of dynamical systems, a familiarity with linear algebra, real and complex analysis, calculus, and ordinary differential equations is necessary, and knowledge of a programming language like C or Java is beneficial but not essential. 


Reviews

“Lynch has successfully captured this: I find this book to be uniquely successful in teaching a branch of mathematics together with computing while inspiring students to look at references and explorations beyond the text.” (Patrick Shipman, SIAM Review, Vol. 62 (2), 2020)

“This book is meant as an upper level undergraduate or graduate text in dynamical systems. … this is an attractive text, one that I wish I had access to when I was learning dynamical systems, and one that I would be glad to teach from.” (John Starrett, MAA Reviews, July 28, 2019)

Authors and Affiliations

  • Manchester Metropolitan University, Manchester, UK

    Stephen Lynch

About the author

Stephen Lynch is Senior Lecturer in the Department of Computing and Mathematics at Manchester Metropolitan University.

Bibliographic Information

Publish with us