Undergraduate Topics in Computer Science

Introduction to Deep Learning

From Logical Calculus to Artificial Intelligence

Autoren: Skansi, Sandro

  • Offers a welcome clarity of expression, maintaining mathematical rigor yet presenting the ideas in an intuitive and colourful manner
  • Includes references to open problems studied in other disciplines, enabling the reader to pursue these topics on their own, armed with the tools learned from the book
  • Presents an accessible style and interdisciplinary approach, with a vivid and lively exposition supported by numerous examples, connected ideas, and historical remarks
Weitere Vorteile

Dieses Buch kaufen

eBook 35,69 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-73004-2
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: PDF, EPUB
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 48,14 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-73003-5
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Über dieses Lehrbuch

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.

Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.

This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Über den Autor

Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.

Inhaltsverzeichnis (11 Kapitel)

Dieses Buch kaufen

eBook 35,69 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-73004-2
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: PDF, EPUB
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 48,14 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-73003-5
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Loading...

Wir empfehlen

Loading...

Bibliografische Information

Bibliographic Information
Buchtitel
Introduction to Deep Learning
Buchuntertitel
From Logical Calculus to Artificial Intelligence
Autoren
Titel der Buchreihe
Undergraduate Topics in Computer Science
Copyright
2018
Verlag
Springer International Publishing
Copyright Inhaber
Springer International Publishing AG, part of Springer Nature
eBook ISBN
978-3-319-73004-2
DOI
10.1007/978-3-319-73004-2
Softcover ISBN
978-3-319-73003-5
Buchreihen ISSN
1863-7310
Auflage
1
Seitenzahl
XIII, 191
Anzahl der Bilder
38 schwarz-weiß Abbildungen
Themen