Image Processing, Computer Vision, Pattern Recognition, and Graphics

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings

Herausgeber: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Maier-Hein, L., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan, H., Madabhushi, A. (Eds.)

Dieses Buch kaufen

eBook 55,92 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-030-00889-5
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: EPUB, PDF
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 70,61 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-030-00888-8
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Über dieses Buch

This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.

The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Inhaltsverzeichnis (43 Kapitel)

  • UNet++: A Nested U-Net Architecture for Medical Image Segmentation

    Zhou, Zongwei (et al.)

    Seiten 3-11

  • Deep Semi-supervised Segmentation with Weight-Averaged Consistency Targets

    Perone, Christian S. (et al.)

    Seiten 12-19

  • Handling Missing Annotations for Semantic Segmentation with Deep ConvNets

    Petit, Olivier (et al.)

    Seiten 20-28

  • A Unified Framework Integrating Recurrent Fully-Convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data

    Jafari, Mohammad H. (et al.)

    Seiten 29-37

  • Multi-scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification

    Peng, Liying (et al.)

    Seiten 38-46

Dieses Buch kaufen

eBook 55,92 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-030-00889-5
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: EPUB, PDF
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 70,61 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-030-00888-8
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Loading...

Wir empfehlen

Loading...

Bibliografische Information

Bibliographic Information
Buchtitel
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
Buchuntertitel
4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
Herausgeber
  • Danail Stoyanov
  • Zeike Taylor
  • Gustavo Carneiro
  • Tanveer Syeda-Mahmood
  • Anne Martel
  • Lena Maier-Hein
  • João Manuel R.S. Tavares
  • Andrew Bradley
  • Joao Paulo Papa
  • Vasileios Belagiannis
  • Jacinto C. Nascimento
  • Zhi Lu
  • Sailesh Conjeti
  • Mehdi Moradi
  • Hayit Greenspan
  • Anant Madabhushi
Titel der Buchreihe
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Buchreihen Band
11045
Copyright
2018
Verlag
Springer International Publishing
Copyright Inhaber
Springer Nature Switzerland AG
eBook ISBN
978-3-030-00889-5
DOI
10.1007/978-3-030-00889-5
Softcover ISBN
978-3-030-00888-8
Auflage
1
Seitenzahl
XVII, 387
Anzahl der Bilder
159 schwarz-weiß Abbildungen
Themen