Skip to main content
  • Book
  • © 2020

Novel Devices Based on Relaxor Ferroelectric PMN-PT Single Crystals

Authors:

  • Nominated as an outstanding PhD thesis by Tsinghua University
  • Reports on important advances in the study of ferroelectric materials
  • Extends the applications of PMN-PT single crystals into areas other than piezoelectric devices
  • Provides novel device design ideas

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (5 chapters)

  1. Front Matter

    Pages i-xiv
  2. Introduction

    • Huajing Fang
    Pages 1-28
  3. Conclusion and Outlook

    • Huajing Fang
    Pages 103-105

About this book

This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the ‘photon revolution’ of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The storedinformation can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.

Authors and Affiliations

  • Department of Chemistry, Tsinghua University, Beijing, China

    Huajing Fang

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access