Skip to main content

Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery

  • Book
  • © 2020

Overview

  • Nominated as an outstanding PhD thesis by the University of Science and Technology of China
  • Provides new strategies for effective carbon and nitrogen removal and phosphorus recovery in membrane bioreactors
  • Develops novel electrochemical membrane bioreactors techniques and methods for in-situ utilization of generated electricity

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery. 

Authors and Affiliations

  • School of Environmental Science and Engineering, Shandong University, Qingdao, China

    Yunkun Wang

About the author

Dr. Yunkun Wang received his Ph.D. in Environmental Engineering from University of Science & Technology of China in 2014. He is currently an associate professor at the School of Environmental Science and Engineering, Shandong University, China, involved in developing membrane-based technologies for sustainable wastewater treatment. Originally trained as an environmentalist, Dr. Yunkun Wang adopts multidisciplinary approaches to tackle environmental problems, especially water pollution issues. His research interest lies in the development of novel membrane separation materials and processes for water treatment and resources recovery, with over 40 research papers published, including Environmental Science & Technology, Water Research and Science Advances. He was awarded by Chinese Academy of Sciences with the Excellent Doctoral Dissertation.

Bibliographic Information

Publish with us