Get 40% off of select print and eBooks in Engineering & Materials Science!

Astrophysics and Space Science Proceedings
cover

Illuminating Dark Matter

Proceedings of a Simons Symposium

Editors: Essig, Rouven, Feng, Jonathan, Zurek, Kathryn (Eds.)

  • Presents broad coverage of novel theories, computational approaches, and detection strategies for dark matter
  • Written by leading expects in the field
  • Includes handy summaries of past literature and the current progress of dark matter investigations
see more benefits

Buy this book

eBook 83,29 €
price for China (P.R.) (gross)
  • The eBook version of this title will be available soon
  • Due: 2019年12月30日
  • ISBN 978-3-030-31593-1
  • Digitally watermarked, DRM-free
  • Included format:
  • ebooks can be used on all reading devices
Hardcover 129,99 €
price for China (P.R.) (gross)
  • Due: 2019年12月30日
  • ISBN 978-3-030-31592-4
  • Free shipping for individuals worldwide
About this book

Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques—all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe.

About the authors

Rouven Essig is an Associate Professor of Physics at the C.N. Yang Institute for Theoretical Physics (YITP) at Stony Brook University in Stony Brook, New York. He is a particle physicist studying the fundamental building blocks of matter (particles) and their interactions (forces), and how they shape our Universe. 
Professor Essig was born and grew up in South Africa. His undergraduate education took place at the University of the Witwatersrand in Johannesburg. He received his PhD in 2008 from Rutgers University and was a Research Associate at SLAC National Accelerator Laboratory at Stanford University from 2008 to 2011, before joining the faculty at Stony Brook University in 2011.
Professor Jonathan Feng works at the interface of particle physics and cosmology, with the goal of exploring the deep connections between our understanding of the Universe at the smallest and largest length scales. Feng has contributed to global developments in the field through wide-ranging work on new particles and forces, dark matter, collider physics, cosmic rays, supersymmetry, and extra dimensions.
Feng holds degrees in physics and mathematics from Harvard, Cambridge, and Stanford universities. He joined the UC Irvine faculty in 2001 and was appointed Professor and Chancellor's Fellow in 2006. His work has been recognized by an NSF CAREER Award, UCI's Distinguished Assistant Professor Award for Research, the Outstanding Young Researcher Award from the International Association of Chinese Physicists and Astronomers, a Sloan Research Fellowship, a Guggenheim Fellowship, AAAS Fellowship, and Simons Fellow and Investigator Awards.He has been a member and officer of the Aspen Center for Physics, co-chair of the Advisory Board of the Kavli Institute for Theoretical Physics, and editor-in-chief and editor of the journals Open Physics, Nuclear Physics B, and Physics Reports. He has served in advisory roles for the U.S. National Science Foundation, the Department of Energy, and NASA, as well as for national science funding agencies abroad, including those of Austria, Canada, Hong Kong, Israel, the Netherlands, Switzerland, Taiwan, and the United Kingdom.
Kathryn Zurek joined the LBNL theory group in 2014. She completed her PhD in 2006 at the University of Washington (with David B. Kaplan), and then became a postdoc at the University of Wisconsin, Madison.  She was awarded the David Schramm fellowship at Fermilab in 2008 before becoming an assistant and then associate professor at the University of Michigan.  In 2010, she was a recipient of an NSF CAREER award.

Dr. Zurek has a wide range of interests, mostly focused at the boundary of particle physics with astrophysics and cosmology. Her work spans both studies of new physics signatures at colliders, as well as astrophysical searches for dark matter (DM) and physics beyond the Standard Model in the neutrino sector. She originated Hidden Valley models as a portal to hidden world signatures, including displaced decays, at colliders. More recently, she has been most active in the study of DM, working on theories of DM and ways that we can detect it in the lab by DM-nucleus interactions, at colliders through high energy collisions, and in the galaxy by DM self-annihilations.


Buy this book

eBook 83,29 €
price for China (P.R.) (gross)
  • The eBook version of this title will be available soon
  • Due: 2019年12月30日
  • ISBN 978-3-030-31593-1
  • Digitally watermarked, DRM-free
  • Included format:
  • ebooks can be used on all reading devices
Hardcover 129,99 €
price for China (P.R.) (gross)
  • Due: 2019年12月30日
  • ISBN 978-3-030-31592-4
  • Free shipping for individuals worldwide
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Illuminating Dark Matter
Book Subtitle
Proceedings of a Simons Symposium
Editors
  • Rouven Essig
  • Jonathan Feng
  • Kathryn Zurek
Series Title
Astrophysics and Space Science Proceedings
Series Volume
56
Copyright
2019
Publisher
Springer International Publishing
Copyright Holder
Springer Nature Switzerland AG
eBook ISBN
978-3-030-31593-1
DOI
10.1007/978-3-030-31593-1
Hardcover ISBN
978-3-030-31592-4
Series ISSN
1570-6591
Edition Number
1
Number of Pages
X, 154
Number of Illustrations
4 b/w illustrations, 49 illustrations in colour
Topics