Discrete Event Dynamic Systems

Theory and Applications
Editor-in-Chief: S. Lafortune

► Publishes high-quality, peer-reviewed papers on the modeling and control of discrete event dynamical systems (DEDS).
► Presents general theories and methodologies of DEDSs and their applications.
► Discusses practical problems from which some generally applicable DEDS theories or methodologies can be formulated.

The focus of this journal is on general theories and methodologies of discrete event dynamic systems (DEDS) and their applications, as well as on practical problems from which some generally applicable theories or methodologies can be formulated. The scope of the journal is defined by its emphasis on the modeling of discrete events by dynamic systems, and on problems of their control and optimization. All papers are peer-reviewed.

J-DEDS covers all aspects of DEDS, including: theory and formal models (supervisory control and diagnosis, Petri nets, Min-Max-plus algebras, DEDS specification, or simulation formalisms), performance analysis, optimization, event-based control and optimal control (perturbation analysis, control synthesis, sample-path-based approaches, AI-based learning schemes, scalable solutions to large and complex systems), and applications (case studies and software engineering). J-DEDS also covers the interface of DEDS with hybrid systems and cyber-physical systems.

Impact Factor: 1.128 (2018), Journal Citation Reports®

On the homepage of Discrete Event Dynamic Systems at springer.com you can
► Sign up for our Table of Contents Alerts
► Get to know the complete Editorial Board
► Find submission information