Advanced Methods of Structural Analysis
Igor A. Karnovsky · Olga Lebed

Advanced Methods of Structural Analysis
Dedicated to
Tamara L’vovna Gorodetsky
Preface

Theory of the engineering structures is a fundamental science. Statements and methods of this science are widely used in different fields of engineering. Among them are the civil engineering, ship-building, aircraft, robotics, space structures, as well as numerous structures of special types and purposes – bridges, towers, etc. In recent years, even micromechanical devices become objects of structural analysis.

Theory of the engineering structures is alive and is a very vigorous science. This theory offers an engineer-designer a vast collection of classical methods of analysis of various types of structures. These methods contain in-depth fundamental ideas and, at the present time, they are developed with sufficient completeness and commonness, aligned in a well-composed system of conceptions, procedures, and algorithms, use modern mathematical techniques and are brought to elegant simplicity and perfection.

We now live in a computerized world. A role and influence of modern engineering software for analysis of structures cannot be overestimated. The modern computer programs allow providing different types of analysis for any sophisticated structure. As this takes place, what is the role of classical theory of structures with its in-depth ideas, prominent conceptions, methods, theorems, and principles? Knowing classical methods of Structural Analysis is necessary for any practical engineer. An engineer cannot rely only on the results provided by a computer. Computer is a great help in modeling different situations and speeding up the process of calculations, but it is the sole responsibility of an engineer to check the results obtained by a computer. If users of computer engineering software do not have sufficient knowledge of fundamentals of structural analysis and of understanding of physical theories and principal properties of structures, then he/she cannot check obtained numerical results and their correspondence to an adopted design diagram, as well as explain results obtained by a computer. Computer programs “...can make a good engineer better, but it can make a poor engineer more dangerous” (Cook R.D, Malkus D.S, Plesha M.E (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley, New York). Only the knowledge of fundamental theory of structures allows to estimate and analyze numerical data obtained from a computer; predict the behavior of a structure as a result of changing a design diagram and parameters; design a structure which satisfies certain requirements; perform serious scientific analysis; and make valid theoretical generalizations. No matter
how sophisticated the structural model is, no matter how effective the numerical algorithms are, no matter how powerful the computers are that implement these algorithms, it is the engineer who analyzes the end result produced from these algorithms. Only an individual who has a deep knowledge and understanding of the structural model and analysis techniques can produce a qualitative analysis.

In 1970, one of the authors of this book was a professor at a structural engineering university in Ukraine. At that time computers were started to be implemented in all fields of science, structural analysis being one of them. We, the professors and instructors, were facing a serious methodical dilemma: given the new technologies, how to properly teach the students? Would we first give students a strong basis in classical structural analysis and then introduce them to the related software, or would we directly dive into the software after giving the student a relatively insignificant introduction to classical analysis. We did not know the optimal way for solving this problem. On this subject we have conducted seminars and discussions on a regular basis. We have used these two main teaching models, and many different variations of them. The result was somewhat surprising. The students who were first given a strong foundation in structural analysis quickly learned how to use the computer software, and were able to give a good qualitative analysis of the results. The students who were given a brief introduction to structural analysis and a strong emphasis on the computer software, at the end were not able to provide qualitative results of the analysis. The interesting thing is that the students themselves were criticizing the later teaching strategy.

Therefore, our vision of teaching structural analysis is as follows: on the first step, it is necessary to learn analytical methods, perform detailed analysis of different structures by hand in order to feel the behavior of structures, and correlate their behavior with obtained results; the second step is a computer application of engineering software.

Authors wrote the book on the basis of their many years of experience of teaching the Structural Analysis at the universities for graduate and postgraduate students as well as on the basis of their experience in consulting companies.

This book is written for students of universities and colleges pursuing Civil or Structural Engineering Programs, instructors of Structural Analysis, and engineers and designers of different structures of modern engineering.

The objective of the book is to help a reader to develop an understanding of the ideas and methods of structural analysis and to teach a reader to estimate and explain numerical results obtained by hand; this is a fundamental stone for preparation of reader for numerical analysis of structures and for use of engineering software with full understanding.

The textbook offers the reader the fundamental theoretical concepts of Structural Analysis, classical analytical methods, algorithms of their application, comparison of different methods, and a vast collection of distinctive problems with their detailed solution, explanation, analysis, and discussion of results; many of the problems have a complex character. Considered examples demonstrate features of structures, their behavior, and peculiarities of applied methods. Solution of all the problems is brought to final formula or number.
Analyses of the following structures are considered: statically determinate and indeterminate multispan beams, arches, trusses, and frames. These structures are subjected to fixed and moving loads, changes of temperature, settlement of supports, and errors of fabrication. Also the cables are considered in detail.

In many cases, same structure under different external actions is analyzed. It allows the reader to be concentrated on one design diagram and perform complex analysis of behavior of a structure.

In many cases, same structure is analyzed by different methods or by one method in different forms (for example, Displacement method in canonical, and matrix forms). It allows to perform comparison analysis of applied methods and see advantages and disadvantages of different methods.

Distribution of Material in the Book

This book contains introduction, three parts (14 chapters), and appendix.

Introduction provides the subject and purposes of Structural Analysis, principal concepts, assumptions, and fundamental approaches.

Part 1 (Chaps. 1–6) is devoted to analysis of statically determinate structures. Among them are multispan beams, arches, trusses, cables, and frames. Construction of influence lines and their application are discussed with great details. Also this part contains analytical methods of computation of displacement of deformable structures, subjected to different actions. Among them are variety loads, change of temperature, and settlements of supports.

Part 2 (Chaps. 7–11) is focused on analysis of statically indeterminate structures using the fundamental methods. Among them are the force and displacement methods (both methods are presented in canonical form), as well as the mixed method. Also the influence line method (on the basis of force and displacement methods) is presented. Analysis of continuous beams, arches, trusses, and frames is considered in detail.

Chapter 11 is devoted to matrix stiffness method which is realized in the modern engineering software. Usually, the physical meaning of all matrix procedures presents serious difficulties for students. Comparison of numerical procedures obtained by canonical equations and their matrix presentations, which are applied to the same structure, allows trace and understands meaning of each stage of matrix analysis. This method is applied for fixed loads, settlement of supports, temperature changes, and construction of influence lines.

Part 3 (Chaps. 12–14) contains three important topics of structural analysis. They are plastic behavior of structures, stability of elastic structures with finite and infinite number of degrees of freedom, including analysis of structures on the basis of the deformable design diagram ($P–\Delta$ analysis), and the free vibration analysis.

Each chapter contains problems for self-study. Answers are presented to all problems.
Appendix contains the fundamental tabulated data.
Authors will appreciate comments and suggestions to improve the current edition. All constructive criticism will be accepted with gratitude.

Coquitlam, Canada
Vancouver, Canada

Igor A. Karnovsky
Olga I. Lebed
We would like to express our gratitude to everyone who shared with us their thoughts and ideas that contributed toward the development of our book.

We thank the members of the Springer team: specifically Steven Elliot (Senior Editor) thanks to whom this book became a reality, as well as, Andrew Leigh (Editorial Assistant), Kaliyan Prema (Project Manager), and many other associates who took part in preparing and publishing our book.

We wish to express our great appreciation to the following professors for their help and support during the process of writing our book:

Isaac Elishakoff (Florida Atlantic University, USA)
Luis A. Godoy (University of Puerto Rico at Mayaguez)
Igor V. Andrianov (Institute of General Mechanics, Germany)
Petros Komodromos (University of Cyprus, Greece)

One of the authors (I.A.K) is grateful to Dr. Vladimir D. Shaykevich (Civil Engineering University, Ukraine) for very useful discussions of several topics in structural mechanics.

We are especially grateful to Dr. Gregory Hutchinson (Project Manager, Condor Rebar Consultants, Vancouver) for the exceptionally useful commentary regarding the presentation and marketing of the material.

We would like to thank Dr. Terje Haukaas (University of British Columbia, Canada) and Lev Bulkowshtein, P.Eng. (Toronto, Canada) for providing crucial remarks regarding different sections of our book.

We thank the management of Condor Rebar Consultants (Canada) Murray Lount, Dick Birley, Greg Birley and Shaun de Villiers for the valuable discussions related to the construction of the special structures.

We greatly appreciate the team of SOFTEK S-Frame Corporation (Vancouver, Canada) for allowing us to use their extremely effective S-Frame Software that helped us validate many calculations. Special thanks go to George Casoli (President) and John Ng (Vice-President) for their consistent attention to our work.

Our special thanks go to David Anderson (Genify.com Corporation) for useful discussions related to the use of computer software in the teaching of fundamental subjects.
We would like to express our gratitude to Evgeniy Lebed (University of British Columbia, Canada) for assisting us with many numerical calculations and validations of results.

Particular appreciation goes to Sergey Nartovich (Condor Rebar Consultants, Vancouver), whose frequent controversial statements raised hell and initiated spirited discussions.

We are very grateful to Kristina Lebed and Paul Babstock, for their assistance with the proofreading of our book.

Our special gratitude goes to all members of our families for all their encouragement, patience, and support of our work.
Contents

Introduction .. xxi

Part I Statically Determinate Structures

1 Kinematical Analysis of Structures ... 3
 1.1 Classification of Structures by Kinematical Viewpoint 3
 1.2 Generation of Geometrically Unchangeable Structures 5
 1.3 Analytical Criteria of the Instantaneously Changeable Structures 7
 1.4 Degrees of Freedom ... 11
 Problems .. 13

2 General Theory of Influence Lines .. 15
 2.1 Analytical Method for Construction of Influence Lines 15
 2.1.1 Influence Lines for Reactions ... 16
 2.1.2 Influence Lines for Internal Forces ... 20
 2.2 Application of Influence Lines for Fixed and Moving Loads 27
 2.2.1 Fixed Loads .. 27
 2.2.2 Moving Loads ... 30
 2.3 Indirect Load Application .. 33
 2.4 Combining of Fixed and Moving Load Approaches 35
 2.5 Properties of Influence Lines .. 36
 Problems .. 37

3 Multispan Beams and Trusses ... 39
 3.1 Multispan Statically Determinate Beams ... 39
 3.1.1 Generation of Multispan Statically Determinate Hinged Beams 39
 3.1.2 Interaction Schemes and Load Path ... 40
3.1.3 Influence Lines for Multispan Hinged Beams .. 42
3.1.4 Summary ... 45
3.2 The Generation of Statically Determinate Trusses .. 47
 3.2.1 Simple Trusses ... 47
 3.2.2 Compound Trusses .. 48
 3.2.3 Complex Trusses ... 49
3.3 Simple Trusses ... 49
3.4 Trusses with Subdivided Panels .. 54
 3.4.1 Main and Auxiliary Trusses and Load Path 55
 3.4.2 Baltimore and Subdivided Warren Trusses 57
3.5 Special Types of Trusses .. 61
 3.5.1 Three-Hinged Trusses .. 61
 3.5.2 Trusses with a Hinged Chain ... 64
 3.5.3 Complex Trusses .. 68
 3.5.4 Summary ... 70
Problems ... 72

4 Three-Hinged Arches .. 77
 4.1 Preliminary Remarks .. 77
 4.1.1 Design Diagram of Three-Hinged Arch .. 77
 4.1.2 Peculiarities of the Arches ... 78
 4.1.3 Geometric Parameters of Circular and Parabolic Arches 79
 4.2 Internal Forces .. 80
 4.3 Influence Lines for Reactions and Internal Forces 86
 4.3.1 Influence Lines for Reactions .. 88
 4.3.2 Influence Lines for Internal Forces ... 88
 4.3.3 Application of Influence Lines ... 92
 4.4 Nil Point Method for Construction of Influence Lines 94
 4.4.1 Bending Moment ... 94
 4.4.2 Shear Force .. 95
 4.4.3 Axial Force .. 96
 4.5 Special Types of Arches .. 97
 4.5.1 Askew Arch .. 97
 4.5.2 Parabolic Arch with Complex Tie ... 100
Problems ... 103

5 Cables .. 109
 5.1 Preliminary Remarks .. 109
 5.1.1 Direct and Inverse Problems .. 110
 5.1.2 Fundamental Relationships ... 111
 5.2 Cable with Neglected Self-Weight ... 113
 5.2.1 Cables Subjected to Concentrated Load .. 113
5.2.2 Cable Subjected to Uniformly Distributed Load ... 116
5.3 Effect of Arbitrary Load on the Thrust and Sag ... 122
5.4 Cable with Self-Weight .. 125
5.4.1 Fundamental Relationships .. 125
5.4.2 Cable with Supports Located at the Same Level .. 127
5.4.3 Cable with Supports Located on the Different Elevations ... 130
5.5 Comparison of Parabolic and Catenary Cables ... 135
5.6 Effect of Axial Stiffness .. 137
5.6.1 Elastic Cable with Concentrated Load ... 137
5.6.2 Elastic Cable with Uniformly Distributed Load ... 139
Problems .. 140

6 Deflections of Elastic Structures .. 145
6.1 Introduction ... 145
6.2 Initial Parameters Method ... 147
6.3 Maxwell–Mohr Method .. 159
6.3.1 Deflections Due to Fixed Loads ... 159
6.3.2 Deflections Due to Change of Temperature ... 165
6.3.3 Summary ... 170
6.4 Displacement Due to Settlement of Supports and Errors of Fabrication 170
6.5 Graph Multiplication Method .. 176
6.6 Elastic Loads Method ... 185
6.7 Reciprocal Theorems ... 189
6.7.1 Theorem of Reciprocal Works (Betti Theorem) .. 189
6.7.2 Theorem of Reciprocal Unit Displacements (Maxwell Theorem) 190
6.7.3 Theorem of Reciprocal Unit Reactions (Rayleigh First Theorem) 192
6.7.4 Theorem of Reciprocal Unit Displacements and Reactions (Rayleigh Second Theorem) 193
6.7.5 Summary ... 193
Problems .. 195

Part II Statically Indeterminate Structures

7 The Force Method .. 211
7.1 Fundamental Idea of the Force Method ... 211
7.1.1 Degree of Redundancy, Primary Unknowns and Primary System 211
7.1.2 Compatibility Equation in Simplest Case .. 214
7.2 Canonical Equations of Force Method .. 217
 7.2.1 The Concept of Unit Displacements 217
 7.2.2 Calculation of Coefficients and Free Terms
 of Canonical Equations .. 219
7.3 Analysis of Statically Indeterminate Structures 222
 7.3.1 Continuous Beams .. 222
 7.3.2 Analysis of Statically Indeterminate
 Frames .. 224
 7.3.3 Analysis of Statically Indeterminate
 Trusses ... 233
7.4 Computation of Deflections of Redundant Structures 243
7.5 Settlements of Supports .. 246
7.6 Temperature Changes ... 251
Problems .. 259
8 The Displacement Method ... 271
 8.1 Fundamental Idea of the Displacement Method 271
 8.1.1 Kinematical Indeterminacy 272
 8.1.2 Primary System and Primary Unknowns 274
 8.1.3 Compatibility Equation, Concept of Unit
 Reaction .. 275
 8.2 Canonical Equations of Displacement Method 276
 8.2.1 Compatibility Equations in General Case 276
 8.2.2 Calculation of Unit Reactions 277
 8.2.3 Properties of Unit Reactions 279
 8.2.4 Procedure for Analysis 280
 8.3 Comparison of the Force and Displacement Methods 291
 8.3.1 Properties of Canonical Equations 292
 8.4 Sidesway Frames with Absolutely Rigid Crossbars 294
 8.5 Special Types of Exposures ... 296
 8.5.1 Settlements of Supports 296
 8.5.2 Errors of Fabrication 300
 8.6 Analysis of Symmetrical Structures 302
 8.6.1 Symmetrical and Antisymmetrical Loading 302
 8.6.2 Concept of Half-Structure 303
Problems .. 305
9 Mixed Method .. 313
 9.1 Fundamental Idea of the Mixed Method 313
 9.1.1 Mixed Indeterminacy and Primary
 Unknowns .. 313
 9.1.2 Primary System .. 314
 9.2 Canonical Equations of the Mixed Method 316
 9.2.1 The Matter of Unit Coefficients
 and Canonical Equations .. 316
9.2.2 Calculation of Coefficients and Free Terms 317
9.2.3 Computation of Internal Forces 318
Problems ... 319

10 **Influence Lines Method** ... 323
10.1 Construction of Influence Lines by the Force Method ... 323
10.1.1 Continuous Beams ... 325
10.1.2 Hingeless Nonuniform Arches 331
10.1.3 Statically Indeterminate Trusses 339
10.2 Construction of Influence Lines by the Displacement Method .. 344
10.2.1 Continuous Beams ... 346
10.2.2 Redundant Frames ... 353
10.3 Comparison of the Force and Displacements Methods .. 355
10.4 Kinematical Method for Construction of Influence Lines .. 358
Problems ... 364

11 **Matrix Stiffness Method** ... 369
11.1 Basic Idea and Concepts ... 369
11.1.1 Finite Elements ... 370
11.1.2 Global and Local Coordinate Systems 370
11.1.3 Displacements of Joints and Degrees of Freedom .. 371
11.2 Ancillary Diagrams .. 372
11.2.1 Joint-Load (J-L) Diagram 372
11.2.2 Displacement-Load (Z-P) Diagram 376
11.2.3 Internal Forces-Deformation (S-e) Diagram .. 377
11.3 Initial Matrices ... 379
11.3.1 Vector of External Joint Loads 379
11.3.2 Vector of Internal Unknown Forces 380
11.4 Resolving Equations ... 381
11.4.1 Static Equations and Static Matrix 381
11.4.2 Geometrical Equations and Deformation Matrix .. 386
11.4.3 Physical Equations and Stiffness Matrix in Local Coordinates 387
11.5 Set of Formulas and Procedure for Analysis .. 390
11.5.1 Stiffness Matrix in Global Coordinates 390
11.5.2 Unknown Displacements and Internal Forces .. 391
11.5.3 Matrix Procedures .. 392
Part III Special Topics

12 Plastic Behavior of Structures .. 423
12.1 Idealized Stress–Strain Diagrams .. 423
12.2 Direct Method of Plastic Analysis 427
12.3 Fundamental Methods of Plastic Analysis 430
 12.3.1 Kinematical Method ... 430
 12.3.2 Static Method .. 430
12.4 Limit Plastic Analysis of Continuous Beams 432
 12.4.1 Static Method .. 433
 12.4.2 Kinematical Method .. 435
12.5 Limit Plastic Analysis of Frames 441
 12.5.1 Beam Failure .. 442
 12.5.2 Sidesway Failure .. 444
 12.5.3 Combined Failure ... 444
 12.5.4 Limit Combination Diagram 444
Problems ... 445

13 Stability of Elastic Systems .. 449
13.1 Fundamental Concepts ... 449
13.2 Stability of Structures with Finite Number Degrees
 of Freedom .. 453
 13.2.1 Structures with One Degree of Freedom 453
 13.2.2 Structures with Two or More Degrees
 of Freedom .. 458
13.3 Stability of Columns with Rigid and Elastic
 Supports .. 461
 13.3.1 The Double Integration Method 461
 13.3.2 Initial Parameters Method 466
13.4 Stability of Continuous Beams and Frames 471
 13.4.1 Unit Reactions of the Beam-Columns 471
 13.4.2 Displacement Method ... 473
 13.4.3 Modified Approach of the Displacement
 Method ... 481
13.5 Stability of Arches ... 483
 13.5.1 Circular Arches Under Hydrostatic Load 484
 13.5.2 Complex Arched Structure:
 Arch with Elastic Supports .. 490
13.6 Compressed Rods with Lateral Loading ...491
 13.6.1 Double Integration Method ..492
 13.6.2 Initial Parameters Method ..494
 13.6.3 P-Delta Analysis of the Frames ..499
 13.6.4 Graph Multiplication Method for Beam-Columns502
Problems ..504

14 Dynamics of Elastic Systems ..513
 14.1 Fundamental Concepts ..513
 14.1.1 Kinematics of Vibrating Processes ..513
 14.1.2 Forces Which Arise at Vibrations ..513
 14.1.3 Degrees of Freedom ...515
 14.1.4 Purpose of Structural Dynamics ..519
 14.1.5 Assumptions ..519
 14.2 Free Vibrations of Systems with Finite Number
 Degrees of Freedom: Force Method ...520
 14.2.1 Differential Equations of Free Vibration in Displacements520
 14.2.2 Frequency Equation ..521
 14.2.3 Mode Shapes Vibration and Modal Matrix522
 14.3 Free Vibrations of Systems with Finite Number
 Degrees of Freedom: Displacement Method530
 14.3.1 Differential Equations of Free Vibration in Reactions530
 14.3.2 Frequency Equation ..532
 14.3.3 Mode Shape Vibrations and Modal Matrix532
 14.3.4 Comparison of the Force and Displacement Methods538
 14.4 Free Vibrations of One-Span Beams with Uniformly
 Distributed Mass ...538
 14.4.1 Differential Equation of Transversal Vibration of the Beam540
 14.4.2 Fourier Method ...541
 14.4.3 Krylov–Duncan Method ..543
Problems ..546

Appendix ..551

Bibliography ...587

Index ..589
Introduction

The subject and purposes of the Theory of Structures in the broad sense is the branch of applied engineering that deals with the methods of analysis of structures of different types and purpose subjected to arbitrary types of external exposures. Analysis of a structure implies its investigation from the viewpoint of its strength, stiffness, stability, and vibration.

The purpose of analysis of a structure from a viewpoint of its strength is determining internal forces, which arise in all members of a structure as a result of external exposures. These internal forces produce stresses; the strength of each member of a structure will be provided if their stresses are less than or equal to permissible ones.

The purpose of analysis of a structure from a viewpoint of its stiffness is determination of the displacements of specified points of a structure as a result of external exposures. The stiffness of a structure will be provided if its displacements are less than or equal to permissible ones.

The purpose of analysis of stability of a structure is to determine the loads on a structure, which leads to the appearance of new forms of equilibrium. These forms of equilibrium usually lead to collapse of a structure and corresponding loads are referred as critical ones. The stability of a structure will be provided if acting loads are less than the critical ones.

The purpose of analysis of a structure from a viewpoint of its vibration is to determine the frequencies and corresponding shapes of the vibration. These data are necessary for analysis of the forced vibration caused by arbitrary loads.

The Theory of Structures is fundamental science and presents the rigorous treatment for each group of analysis. In special cases, all results may be obtained in the close analytical form. In other cases, the required results may be obtained only numerically. However, in all cases algorithms for analysis are well defined.

The part of the Theory of Structures which allows obtaining the analytical results is called the classical Structural Analysis. In the narrow sense, the purpose of the classical Structural Analysis is to establish relationships between external exposures and corresponding internal forces and displacements.
Types of Analysis

Analysis of any structure may be performed based on some assumptions. These assumptions reflect the purpose and features of the structure, type of loads and operating conditions, properties of materials, etc. In whole, structural analysis may be divided into three large principal groups. They are static analysis, stability, and vibration analysis.

Static analysis presumes that the loads act without any dynamical effects. Moving loads imply that only the position of the load is variable. Static analysis combines the analysis of a structure from a viewpoint of its strength and stiffness.

Static linear analysis (SLA). The purpose of this analysis is to determine the internal forces and displacements due to time-independent loading conditions. This analysis is based on following conditions:

1. Material of a structure obeys Hook’s law.
2. Displacements of a structure are small.
3. All constraints are two-sided – it means that if constraint prevents displacement in some direction then this constraint prevents displacement in the opposite direction as well.
4. Parameters of a structure do not change under loading.

Nonlinear static analysis. The purpose of this analysis is to determine the displacements and internal forces due to time-independent loading conditions, as if a structure is nonlinear. There are different types of nonlinearities. They are physical (material of a structure does not obey Hook’s law), geometrical (displacements of a structure are large), structural (structure with gap or constraints are one-sided, etc.), and mixed nonlinearity.

Stability analysis deals with structures which are subjected to compressed time-independent forces.

Buckling analysis. The purpose of this analysis is to determine the critical load (or critical loads factor) and corresponding buckling mode shapes.

P-delta analysis. For tall and flexible structures, the transversal displacements may become significant. Therefore we should take into account the additional bending moments due by axial compressed loads P on the displacements caused by the lateral loads. In this case, we say that a structural analysis is performed on the basis of the deformed design diagram.

Dynamical analysis means that the structures are subjected to time-dependent loads, the shock and seismic loads, as well as moving loads with taking into account the dynamical effects.

Free-vibration analysis (FVA). The purpose of this analysis is to determine the natural frequencies (eigenvalues) and corresponding mode shapes (eigenfunctions) of vibration. This information is necessary for dynamical analysis of any structure subjected to arbitrary dynamic load, especially for seismic analysis. FVA may be considered for linear and nonlinear structures.
Stressed free-vibration analysis. The purpose of this analysis is to determine the eigenvalues and corresponding eigenfunctions of a structure, which is subjected to additional axial time-independent forces.

Time-history analysis. The purpose of this analysis is to determine the response of a structure, which is subjected to arbitrarily time-varying loads.

In this book, the primary emphasis will be done upon the static linear analysis of plane structures. Also the reader will be familiar with problems of stability in structural analysis and free-vibration analysis as well as some special cases of analysis will be briefly discussed.

Fundamental Assumptions of Structural Analysis

Analysis of structures that is based on the following assumptions is called the elastic analysis.

1. Material of the structure is continuous and absolutely elastic.
2. Relationship between stress and strain is linear.
3. Deformations of a structure, caused by applied loads, are small and do not change original design diagram.
4. Superposition principle is applicable.

Superposition principle means that any factor, such as reaction, displacement, etc., caused by different loads which act simultaneously, are equal to the algebraic or geometrical sum of this factor due to each load separately. For example, reaction of a movable support under any loads has one fixed direction. So the reaction of this support due to different loads equals to the algebraic sum of reactions due to action of each load separately. Vector of total reaction for a pinned support in case of any loads has different directions, so the reaction of pinned support due to different loads equals to the geometrical sum of reactions, due to action of each load separately.

Fundamental Approaches of Structural Analysis

There are two fundamental approaches to the analysis of any structure. The first approach is related to analysis of a structure subjected to given fixed loads and is called the fixed loads approach. The results of this analysis are diagrams, which show a distribution of internal forces (bending moment, shear, and axial forces) and deflection for the entire structure due to the given fixed loads. These diagrams indicate the most unfavorable point (or member) of a structure under the given fixed loads. The reader should be familiar with this approach from the course of mechanics of material.
The second approach assumes that a structure is subjected to unit concentrated moving load only. This load is not a real one but imaginary. The results of the second approach are graphs called the influence lines. Influence lines are plotted for reactions, internal forces, etc. Internal forces diagrams and influence lines have a fundamental difference. Each influence line shows distribution of internal forces in the *one specified section* of a structure due to location of imaginary unit moving load only. These influence lines indicate the point of a structure where a load should be placed in order to reach a maximum (or minimum) value of the function under consideration at the specified section. It is very important that the influence lines may be also used for analysis of structure subjected to any fixed loads. Moreover, in many cases they turn out to be a very effective tool of analysis.

Influence lines method presents the higher level of analysis of a structure, than the fixed load approach. Good knowledge of influence lines approaches an immeasurable increase in understanding of behavior of structure. Analyst, who combines both approaches for analysis of a structure in engineering practice, is capable to perform a complex analysis of its behavior.

Both approaches do not exclude each other. In contrast, in practical analysis both approaches complement each other. Therefore, learning these approaches to the analysis of a structure will be provided in parallel way. This textbook presents sufficiently full consideration of influence lines for different types of statically determinate and indeterminate structures, such as beams, arches, frames, and trusses.
Advanced Methods of Structural Analysis
Karnovsky, I.A.; Lebed, O.
2010, XXIV, 593 p., Hardcover