Answers To Chapter 6 In-Chapter Problems.

6.1. The mechanism is identical to hydrogenation, with \([(\text{pin}B)]_2\) replacing \(H_2\) and \([\text{Pt}]\) replacing \(\text{Pd}\). The number of ligands attached to Pt is uncertain, so it is permissible to write \([\text{Pt}]\) instead of \((\text{Ph}_3\text{P})_2\text{Pt}\) or \((\text{Ph}_3\text{P})_3\text{Pt}\).

6.2. The mechanism begins the same, but after coordination of the \(C=O\) \(\pi\) bond to Rh, a \(\text{Si–Rh–O}\) intermediate is obtained. Reductive elimination gives the identical product.

6.3. The mechanism proceeds by insertion of Rh(I) into the \(\text{Si–H}\) bond, coordination of the \(C=C\) \(\pi\) bond to Rh(III), insertion of the \(\pi\) bond into the Rh–Si bond, coordination of CO to Rh(III), insertion of CO into the Rh–C bond, and reductive elimination to give the product and regenerate Rh(I).
6.4. The isomerization of alkylzirconocenes proceeds by a series of β-hydride eliminations and insertions. Because the C(sp²)–Zr bond is much stronger than the C(sp³)–Zr bond, and because the allene product that would be generated by β-hydride elimination from an alkenylzirconocene is high in energy, the β-hydride elimination is uphill in energy.

6.5. An alkylzirconocene undergoes σ-bond metathesis with H₂ gas to give the alkane and Cp₂ZrH⁺. Coordination and insertion of the alkene into the Zr–H bond regenerates the alkylzirconocene.

6.6. The reagent PhI=NTs can be drawn in the resonance form PhI⁺–NTs, where its resemblance to ClO⁻ becomes clear. Moreover, the issues of the square planar coordination sphere of the Mn(salen) complex don’t exist with Cu(II), so a very simple mechanism can be drawn: coordination of the N of the reagent to Cu(II), displacement of PhI by a lone pair on Cu to give a Cu(IV)=NTs reagent, [2 + 2] addition to the alkene, and reductive elimination.

Unfortunately, there’s a problem with this mechanism, too: Cu doesn’t like to be in the IV oxidation state. A more likely mechanism begins with one- or two-electron reduction of Cu(II) to Cu(I) or Cu(0), followed by a Cu(I)/Cu(III) or a Cu(0)/Cu(II) catalytic cycle. The electrons for the reduction would have to come from the PhI=NTs reagent.

6.7. OsO₂(OH)₂ is in equilibrium with OsO₃. Addition of the amine oxide O to Os gives an Os(VI) ate complex, and a lone pair from Os displaces NR₃ to give OsO₄.
6.8. As before, $K_2OsO_2(OH)_4$ is in equilibrium with OsO₃. $Ts\bar{N}Cl$ adds to Os, which uses a lone pair to displace Cl from N and give the key Os(VIII) intermediate. Coordination of the Sharpless ligand creates a complex that adds rapidly to the alkene. Hydrolysis of the Os(VI) product regenerates OsO₂(OH)₂ and provides the product.

6.9. The alcohol and aldehyde are in equilibrium with the hemiacetal. Coordination of Hg(II) to the alkene is followed by attack of the hemiacetal O on the alkene to give, after loss of AcOH, the product.

6.10. Coordination of the alkyne to Pd(II) is followed by attack of O on the distal C to give the furan ring with the C–Pd σ bond. Proton transfer from O to the C bearing the Pd is followed by fragmentation of the C–Pd bond to give the product and to regenerate Pd(II). Instead of protonating C, one could protonate Pd and show a reductive elimination to give the same product.
6.11. The mechanism is very similar to the stoichiometric one, except that the key dialkylcuprate reagent is made from transmetallation of the Grignard reagent.

6.12. As usual, we number the heavy atoms.

Hold on! The product is missing O3. Where did it go? Also, what happens to the two equivalents of C5H9MgCl? It makes sense that O3 should be bound to two +MgCl ions at the end of the reaction. That leaves two C5H9 groups to account for. Perhaps they are disproportionated into C5H10 and C5H8. Make: C2–C8, C2–C9, O3–Mg11 (twice). Break: C2–O3, C10–Mg11 (twice).
The Grignard reagent is obviously a nucleophile. Although C2 is an electrophile, we do not make a C2–C10 bond, so that is not the first step. The first step is substitution of two i-PrO groups on Ti with two C₅H₉ groups. β-Hydride abstraction then occurs to give C₅H₁₀ and a titanacyclopropane, which is a resonance form of Ti(II)–C₅H₈ complex. Exchange of the C₅H₈ alkene ligand for the substrate alkene gives a new Ti(II)–alkene complex, which is a resonance form of a Ti(IV) titanacyclopropane. This ligand exchange converts both C8 and C9 into nucleophiles. Insertion of the C2=O₃ π bond into the C8–Ti bond gives a titanafuran with a new C8–C2 bond. This compound can also be described as an O-titanahemiaminal. The lone pair can be used to cleave the C2–O₃ bond and give an iminium ion and a Ti(IV) alkyl ate complex, which is nucleophilic at C9. Attack of C9 on C2 gives the desired product and a Ti(IV) oxide, which undergoes ligand substitution with two equivalents of C₅H₉MgCl to complete the catalytic cycle.

(a) ligand substitution; (b) β-hydride abstraction; (c) insertion; (d) ligand dissociation and nucleophilic addition.
6.13. The question should read: NMO oxidizes one CO ligand of the alkyne–Co₂(CO)₆ complex to CO₂ and gives an alkyne–Co₂(CO)₅ complex. Write a mechanism for this transformation.

The mechanism begins with nucleophilic attack of the amine oxide O on a CO ligand to give a species that looks something like an ester. The Co–C bond then cleaves, with the electrons being used by C to make a π bond to O and expel NR₃.

6.14. This reaction can be viewed as an acid-catalyzed aldol reaction between an ester and an aldehyde, where the carbonyl O of the ester is replaced with a (CO)₅Cr group.

The mechanism proceeds by BF₃-catalyzed conversion of the Cr carbene complex to an “enol”, followed by attack on the BF₃-complexed aldehyde.

The mechanism begins with a [2 + 2] cycloaddition between the Cr=C bond and the C≡C bond to form the C3–C7 bond and give a chromacyclobutene. Electrocyclic ring opening breaks the Cr4–C3 bond to give an allylidenechromium compound. At this point, several pathways are possible; one is shown below. Electrocyclic ring closing of the 1,3,5-triene system gives a chromacyclohexadiene, insertion of CO into the Cr–C1 bond (or Cr–C6 bond) occurs, and reductive elimination gives the product.

An alternative end-game has the CO insert into the Cr=C bond of the allylidenechromium compound to give a Cr complex of a ketene. Electrocyclic ring closing of the ketene would then give the product.

6.16. The purpose of the P compound is to coordinate to Ni(0) and keep it in solution throughout the course of the reaction. Coordination of the diene to Ni(0) gives a complex that can also be drawn as a Ni(II) nickelacyclopentene complex. Coordination of the alkyne, insertion, and reductive elimination complete the catalytic cycle.
6.17. Coordination of the Rh(I) to the vinyl group and homoallylic rearrangement gives a rhodacyclohexene. Insertion of the alkyne into a Rh–C bond and reductive elimination completes the catalytic cycle.

The C7–C12 and C10–C11 bonds can be made by a Diels–Alder reaction (cyclohexene product). This observation simplifies the problem considerably.
Chapter 6

The mechanism for formation of the cycloheptenone is exactly the same as discussed in the book. After a Diels–Alder reaction, the enol ether is hydrolyzed to the ketone by an acid-catalyzed mechanism.

6.19. As is almost always true when when the substrate in a Pd-catalyzed reaction is C(sp2)–X, the first step is oxidative addition of Pd(0) to the C–I bond to give an arylpalladium(II) intermediate. (Although the Pd compound that is added to the reaction mixture is Pd(II), it is reduced in situ to Pd(0) by the mechanism outlined in the text.) Coordination of CO and insertion into the C–Pd bond gives an acylpalladium(II) intermediate. Deprotonation of the alcohol is followed by nucleophilic attack on the carbonyl C. Expulsion of Pd(0) gives the product and completes the catalytic cycle.

(a) oxidative addition; (b) coordination; (c) insertion.

The mechanism begins with oxidative addition of Pd(II) to the C2–Br\textsubscript{1} bond to give an arylpalladium(II) compound. (Although the Pd compound that is added to the reaction mixture is Pd(II), it is reduced in situ
to Pd(0) by the mechanism outlined in the text.) Insertion into the C6=C7 π bond is followed by β-hydride elimination, with the H coming from C8, to give the product and H–Pd(II)–Br. Deprotonation of the Pd complex regenerates Pd(0) to complete the catalytic cycle.

6.21. It proceeds by the standard mechanism for cross-coupling reactions: oxidative addition of Pd(0) to the C–I bond, transmetallation to give the C–Pd(II)–C compound, and reductive elimination.

6.22. Again, it proceeds by the standard mechanism for cross-coupling reactions: oxidative addition of Pd(0) to the C–Cl bond, transmetallation (can also be viewed as ligand substitution) to give the N–Pd(II)–C compound, and reductive elimination.
6.23. The mechanism is the same as a regular Stille coupling, except that coordination of CO and insertion into the Pd–C bond intervenes between the oxidative addition and transmetallation steps. At some point the TfO$^-$ group on Pd is exchanged for a Cl$^-$ group.

6.24. Protonation of the epoxide by AcOH is followed by nucleophilic ring-opening with Pd(0) (S$_{N2}$-type reaction) to give an allylpalladium(II) complex. The AcO$^-$ then attacks the allyl ligand, regenerating Pd(0) and affording the product.
6.25(a). Coordination of Pd(II) to the alkene converts the alkene into an electrophile, which is attacked by the OH lone pair to give an alkylpalladium(II) complex. β-Hydride elimination, insertion, and a second β-hydride elimination afford the product and a Pd(II) hydride, which is deprotonated to Pd(0). Oxidation of Pd(0) back to Pd(II) is carried out by Cu(OAc)₂, and the Cu is then reoxidized by O₂.

(b) The mechanism is exactly the same as described in (a), except that the nucleophile is H₂O and the last β-hydride elimination removes H from O, not C.

6.27. The Mo=\(\text{C} \) bond of the catalyst (\(R = t\)-Bu in the first catalytic cycle, \(R = h \) subsequently) undergoes a \([2 + 2]\) cycloaddition to the substrate to give a molybdacyclobutane. A \([2 + 2]\) retrocycloaddition affords a new Mo=\(\text{C} \) bond, which undergoes intramolecular \([2 + 2]\) cycloaddition with the other \(\text{C}=\text{C} \) bond in the molecule. A \([2 + 2]\) retrocycloaddition affords the product and regenerates the catalyst.

6.28. The mechanism again consists of a series of \([2 + 2]\) cycloadditions and retrocycloadditions.
Answers To Chapter 6 End-of-Chapter Problems.

1. (a) A new C–C bond is formed between a nucleophilic C–Zn and an electrophilic C–Br. This Pd-catalyzed reaction proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The oxidative addition requires Pd(0). The role of the Dibal is to reduce the Pd(II) to Pd(0) by two transmetallations and reductive elimination of H₂.

\[
\text{Cl} \quad \text{Pd} \quad \text{Ph₃P} \quad \text{PPh₃} \quad \text{Cl} \quad \xrightarrow{2 \text{-Bu₂AlH}} \quad \text{Pd} \quad \text{Ph₃P} \quad \text{Cl} \quad \text{H₂} \quad \text{Ph₃P} \quad 0 \quad \text{Pd}
\]

(a) transmetallation; (b) reductive elimination; (c) oxidative addition.

(b) An allylic leaving group is replaced by a nucleophile. This reaction proceeds through the standard sequence for allylic substitutions catalyzed by Pd, i.e. two sequential backside displacements. The chiral ligand causes the nucleophile to attack only one of the two prochiral termini of the meso π allyl intermediate. The N may be deprotonated before or after it attacks the π allyl complex.

(c) A new C–C bond is formed between a nucleophilic terminal alkyne PhC=CH and an electrophilic C–I. This Sonogashira reaction proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The terminal alkyne is converted to a Cu(I) acetylide before transmetallation to Pd occurs. The mechanism was discussed in the text (Section 6.3.4).
(d) A new C–C bond is formed between a nucleophilic C–B and an electrophilic C–I. This Suzuki coupling proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The mechanism was discussed in the text (Section 6.3.4).

(e) There is no nucleophile in this Heck reaction. The first step must be oxidative addition of Pd(0) to the Ar–I bond to give a Pd(II) complex. (Before this can occur, the Pd(II) complex that is added to the reaction mixture must be reduced to Pd(0). In this system, it is not clear how it happens. Either the I– or the S in a small amount of heterocycle might act as a reducing agent.) The crucial C–C bond is then formed by coordination of the π bond of acrylate to the Pd(II) complex and migratory insertion. β-Hydride elimination gives the organic product and I–Pd(II)–H. Deprotonation and dissociation of I– regenerates the Pd(0).

(f) An allylic C with a leaving group is being epimerized by the Pd(0) complex. One possible mechanism is simple displacement of N by Pd(0) to form the π allyl complex, then displacement of Pd(0) by N to reform the ring. The problem with this mechanism is that allylic substitution reactions catalyzed by Pd proceed with retention of configuration (two S_N^2-type displacements), whereas this reaction proceeds with inversion of configuration. In this particular molecule, the anionic N can coordinate to the Pd π allyl intermediate in an intramolecular fashion; reductive elimination from this chelate would give the product with overall inversion of configuration.
(g) Make: C4–C5, C1–H. Break: C5–H.

\[
\begin{align*}
\text{CH}_3 & & \text{CO}_2 \text{Et} & & \text{CN} \\
\text{CO}_2 \text{Et} & & \text{Ph} & & \text{CN}
\end{align*}
\]

1 mol% Pd(II)(dba)₃·CHCl₃

5 mol% dppf

C5 is extremely acidic, and once deprotonated it is nucleophilic. C4, though, is not electrophilic, so we need to convert it to an electrophilic C. Looking at the product, one sees that the new C–C bond is allylic. This suggests attack of C5 on a π allyl complex. This complex could be made by insertion of the C1≡C2 π bond into a Pd–H bond. This last could be made by protonation of Pd(0) by C5.

Protonation of Pd(0) gives \([\text{Pd}(\text{II})–\text{H}]^+\). Coordination and insertion of the C1≡C2 π bond gives the Pd π allyl complex. Attack of the nucleophile on the less hindered terminus gives the observed product.

(h) This reaction is simply a Wacker oxidation. Its mechanism was discussed in the text (Section 6.3.6). The key steps are attack of H₂O on an electrophilic Pd–alkene complex, then β-hydride elimination to give the enol.

Incorporation of CO into an organic substrate usually occurs by insertion of CO into a C–metal bond. The requisite C1–metal bond is formed by oxidative addition of a Pd(0) species into the C1–Br bond, the normal first step upon combining a Pd(0) compound and an aryl halide. Coordination and insertion of CO follows. Addition of N to the carbonyl and loss of Pd(0) gives an iminium ion, which is trapped by EtOH to give the product.

(j) This is another Heck reaction. After the insertion to give the σ-bound Pd(II), β-hydride elimination occurs in the direction of the OH to give an enol. The enol tautomerizes to the aldehyde.

In fact, a mechanism for this reaction can be drawn that does not involve Pd at all, but let’s assume that Pd is required for it to proceed. Cl− must be nucleophilic. It can add to C1 of the alkyne if the alkyne is activated by coordination to Pd(II). (Compare Hg-catalyzed addition of water to alkynes.) Addition of Cl− to an alkyne–Pd(II) complex gives a σ-bound Pd(II) complex. Coordination and insertion of acrolein into the C2–Pd bond gives a new σ-bound Pd(II) complex. In the Heck reaction, this complex would undergo β-hydride elimination, but in this case the Pd enolate simply is protonated to give the enol of the saturated aldehyde.
(l) A new C–C bond is formed between a nucleophilic C–Sn and an electrophilic C–Br. This Stille coupling proceeds through the standard oxidative addition, transmetallation, reductive elimination process characteristic of Pd-catalyzed cross-couplings. The mechanism was discussed in the text (Section 6.3.4).

The first step is oxidative addition to the C1–O9 bond to make a Pd π allyl complex. Both C1 and C3 are rendered reactive by this step. At this point, we can either make the C1–C10' bond by CO insertion, or we can make the C3–C7 bond by insertion of the C7=C8 π bond into the C3–Pd bond. The first alternative would be followed by displacement of Pd from C10', requiring a new activation step to incorporate Pd into the substrate and allow the formation of the other bonds. After insertion of the C7=C8 π bond into the C3–Pd bond, though, we get a C8–Pd bond. This can insert CO to give the C8–C10 bond. The C1=C2 π bond can now insert into the C10–Pd bond, giving a C1–Pd bond. A second equivalent of CO then inserts. Finally, displacement of Pd from C10' by MeOH gives the product. The mechanism by which the Pd displacement proceeds is written as acid-promoted because the by-product of the reaction is AcOH.
(n) Make: C1–C7, C2–C5, C6–C7. Break: C1–B, O3–C4. C1, with its bond to a negatively charged B, is nucleophilic.

A simple Suzuki-type coupling would form a bond between C1 and either C4 or C6. Obviously that isn’t happening here. The O3–C4 bond is propargylic, so Pd(0) can undergo oxidative addition here to make a propargyl–Pd(II) complex. No new bonds are formed to C4, but the propargyl complex is in equilibrium with an allenyl complex with a C6–Pd bond. Insertion of CO into this bond gives the C7–C6 bond. Now transmetallation with the C1–B bond and reductive elimination gives the C1–C7 bond. At this point, the C2–C5 bond still needs to be formed. An electrocyclic ring-closing forms this bond and gives a zwitterionic oxyallyl. Proton transfer from C2 to C6 reestablishes indole aromaticity and completes the sequence.
The simplest mechanism that can be drawn for this reaction is as follows. First the Pt(IV) precatalyst needs to be reduced to Pt(II). This can be accomplished by σ bond metathesis of two Pt–Cl bonds with Cl$_3$Si–H to give a Pt(IV) dihydride, which can undergo reductive elimination to give a Pt(II) species. (The Pt species are shown as PtCl$_4$ and PtCl$_2$, but of course other ligands may be present.) The catalytic cycle then proceeds by oxidative addition of Cl$_3$Si–H to Pt(II), coordination and insertion of the alkene into the Pt–H bond, and reductive elimination of the product, just like a Pd-catalyzed hydrogenation.

Experiments show that the actual mechanism of this reaction is considerably more complex than the one shown [radicals may be involved, especially in the reduction of Pt(IV) to Pt(II)], but the simple mechanism above provides a starting point for further investigation.

The reaction is a carbonylative Stille coupling. The mechanism was discussed in the text (Section 6.3.4).

Addition of a nucleophile to an alkene is catalyzed by Pd(II) salts. The Pd(II) coordinates to the alkene and makes it electrophilic, and the nucleophile attacks to give a C–Pd bond. In this case, because the substrate is a diene, the product is an allylpalladium(II) complex, a good electrophile. It is attacked by AcO$^-$ to give the organic product plus Pd(0). O$_2$ then oxidizes the Pd(0) back to Pd(II).
(r) Addition of a nucleophile to an alkene is catalyzed by Pd(II) salts. The product, an alkylpalladium(II) compound, usually undergoes β-hydride elimination, but in this case insertion of CO occurs to give an acylpalladium(II) complex. Displacement of Pd(0) by MeOH gives the product. Pd(0) is reoxidized to Pd(II) by CuCl₂.

(a) coordination; (b) coordination, insertion; (c) β-hydride elimination.

(s) This reaction is a neat twist on allylic substitution. Pd(0) (generated in situ, perhaps by oxidation of CO to CO₂) reacts with the allylic epoxide by backside displacement to give a zwitterionic (π-allyl)Pd(II) complex. MeOH protonates the alkoxide, and MeO⁻ then coordinates to Pd. The π-allyl group is in equilibrium with a σ-allyl group, and coordination and insertion of CO into the Pd–C σ bond provides an acylpalladium(II) complex. Reductive elimination of the ester regenerates Pd(0).
Chapter 6

(a) S_N2-type oxidative addition; (b) ligand association; (c) insertion; (d) reductive elimination.

(t) Pd-catalyzed substitutions of aryl halides proceed by an oxidative addition–ligand substitution–reductive elimination mechanism.

The first step, as usual with aryl halides, is oxidative addition of Pd(0) to the C–I bond. This step makes C2 reactive. Coordination of the alkyne to Pd(II) and insertion makes the C2–C7 bond and gives an alkenylpalladium(II) complex. Finally, coordination of N to Pd(II), removal of HI by the base, and reductive elimination provides the product and regenerates Pd(0).
2. (a) Make: C2–C6, O8–Si9. We also remove one H from Si9 and add one to C7. Ti is in the (II)
oxidation state. Low-valent Ti compounds are commonly used for reductive coupling reactions. We can
form the C6–C2 bond by such a reductive coupling.

Dissociation of Me₃P from the 18-electron complex gives a 16-electron complex. Association of the
carbonyl group gives a Ti(II) π complex that can also be described as a Ti(IV) metallaoxirane. Dissoci-
ation of the second Me₃P, association of the alkene, and migratory insertion into the C2–Ti bond gives a
five-membered metallacycle.
We still need to form the O8–Si9 bond, break the C7–Ti bond, and regenerate Ti(II). A σ bond metathesis between the Si9–H and Ti–O8 bonds can occur to give a very strong Si9–O8 bond and a Ti–H bond. No change in the Ti(IV) oxidation state occurs. Reductive elimination from Ti(IV) gives the product and regenerates Ti(II).

(b) Make: C4=C5' and C4'=C5 (x' indicates that atom in another molecule). Break: C4=C5. Mo is in the (VI) oxidation state, so it is d^0. The complex is a 14-electron complex. (The ArN= group uses the N lone pair to contribute another pair of electrons.) This is a ROMP reaction, i.e. ring-opening metathesis polymerization (Section 6.4.2).

Compounds containing M=C bonds can undergo [2+2] cycloadditions, and this reaction allows olefin metathesis to occur. The Mo=C bond [2+2] cycloadds to the C4=C5 bond to give a metallacyclobutane. A retro [2+2] cycloaddition cleaves the C4=C5 bond and makes a Mo=C4 bond. This new bond cycloadds across another C4'=C5' bond to make a new C4–C5' bond; retro [2+2] cycloaddition cleaves the C4=C5 bond and completes the formation of the C4=C5' bond. The process repeats itself many times over to make the polymer. No change in Mo’s oxidation state or d electron count occurs in any step.
(c) Make: C1–C5, C2–H. Break: C5–H. Rh is in the (I) oxidation state, hence it is d⁸; the two acetone molecules are counted as two-electron donors, so it is a 16-electron complex.

\[
\begin{align*}
\text{L}_n \text{Mo} & \quad \text{t-Bu} \quad \text{CF}_3 \\
\text{CF}_3 & \quad \text{CF}_3 \\
& \quad \text{MoL}_n \\
\text{CF}_3 & \quad \text{CF}_3 \\
\text{t-Bu} & \quad \text{CF}_3 \\
\text{CF}_3 & \quad \text{CF}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{L}_n \text{Mo} & \quad \text{t-Bu} \quad \text{CF}_3 \\
\text{CF}_3 & \quad \text{CF}_3 \\
& \quad \text{MoL}_n \\
\text{CF}_3 & \quad \text{CF}_3 \\
\text{t-Bu} & \quad \text{CF}_3 \\
\text{CF}_3 & \quad \text{CF}_3 \\
\end{align*}
\]

Essentially the C1=C2 bond is inserted into the C5–H bond. This suggests that the Rh oxidatively adds across the C5–H bond. Rh can do this with aldehydes. After oxidative addition to the C5–H bond to give a Rh(III) complex, insertion and reductive elimination give the product and regenerate Rh(I). Solvent molecules may be associating or dissociating at any point in the sequence.

(d) Alkene isomerization can proceed by an oxidative addition (to the allylic C–H bond)/ reductive elimination sequence or by an insertion/ β-hydride elimination sequence. Wilkinson’s catalyst normally isomerizes alkenes by the first mechanism. However, in this case BuLi is added to the catalyst first. This will give a Rh–alkyl bond, which can decompose by β-hydride elimination (as many metal alkyls do) to a Rh–H bond. Now the catalyst can carry out the insertion/ β-hydride elimination sequence to isomerize the alkene to a thermodynamic mixture of isomers. The most conjugated alkene is the lowest in energy and is obtained in greatest proportion.
Chapter 6

The product is missing C1 and C8. They are lost as H₂C=CH₂. Make: C2=C7, C1=C8. Break: C1=C2, C7=C8. The Ru complex is 16-electron, d², Ru(IV). This is another olefin metathesis reaction, except this time it is ring-closing metathesis. The mechanism proceeds by a series of [2+2] and retro [2+2] cycloadditions. The R group starts off as CH=CPh₂, but after one cycle R=H.

(f) See answer to in-chapter problem 6.6.

(g) Make: C3–C7 (x2), C4–C6 (x2), C6–C7. Ni is in the (0) oxidation state. Ni(cod)₂ is an 18-electron complex. (Ph₃P)₂Ni(cod) is also an 18-electron complex. The fact that we are making six-membered rings from isolated π bonds suggests a cyclotrimerization.
Coordination of Ni(0) to the alkyne gives a π complex, which can be written in its Ni(II) resonance form. Coordination and insertion of another alkyne forms the new C6–C7 bond and gives a nickelacyclopentadiene. Maleimide may react with the metallacycle by coordination, insertion, and reductive elimination to give a cyclohexadiene. Alternatively, [4+2] cycloaddition to the metallacycle followed by retro [4+1] cycloaddition to expel Ni(0) gives the same cyclohexadiene. The cyclohexadiene can undergo Diels–Alder reaction with another equivalent of maleimide to give the observed product.

(h) Make: C1–Si7, C6–C2, C5–H. Break: Si7–H. Y is in the (III) oxidation state in the d0, 14-electron complex.

The overall transformation involves insertion of the C5=C6 and the C2=C1 π bonds into the Si7–H bond. An oxidative addition of Si–H to Y, insertion, insertion, reductive elimination sequence might occur. The problem with this is that the d0 Y complex can’t do oxidative addition. The alternative by which the Si–H
bond is activated is a σ bond metathesis process. \(\text{Cp}^*\text{Y-Me}\) undergoes σ bond metathesis with the Si–H bond to give \(\text{Cp}^*\text{Y-H}\). Coordination and insertion of the C5=C6 π bond into the Y–H bond gives the C5–H bond and a C6–Y bond. Coordination and insertion of the C1=C2 π bond into the C6–Y bond gives the key C6–C2 bond and a C1–Y bond. Finally, σ bond metathesis occurs once more to make the C1–Si bond and regenerate \(\text{Cp}^*\text{Y-H}\).

\[
\begin{align*}
\text{H--SiH}_2\text{Ph} & \quad \xrightarrow{\text{(a)}} \quad \text{(Cp*)}_2\text{Y-Me} \quad \xrightarrow{\text{(a)}} \quad \text{(Cp*)}_2\text{Y-H} \\
\text{PhH}_2\text{Si} & \quad \xrightarrow{\text{(a)}} \quad \text{YCp}^*_2 \\
\text{OSiR}_3 & \quad \xrightarrow{\text{(a)}} \quad \text{OSiR}_3 \\
\end{align*}
\]

(a) σ bond metathesis; (b) coordination, insertion.

(j) Make: C1–C12, C2–C6, C7–C11.
The overall reaction is a cyclotrimerization. Cyclotrimerizations are usually catalyzed by low-valent Co or Ni complexes by a reductive coupling mechanism, but the Ru=C complex lives to do \([2+2]\) cycloadditions, so let it. Cycloaddition to the C1=C2 bond gives a ruthenacyclobutene, which can undergo electrocyclic ring opening to give a Ru=C2 \(\pi\) bond. This \(\pi\) bond can do a \([2+2]\) cycloaddition to the C6=C7 \(\pi\) bond. Another ring opening, another \([2+2]\) cycloaddition, another ring opening, another \([2+2]\) cycloaddition, and a \([2+2]\) retrocycloaddition give the product and regenerate the catalyst.

(k) The mechanism of this intramolecular Rh-catalyzed \([5 + 2]\) cycloaddition proceeds by the mechanism shown in Section 6.2.12 (with the alkyne in the text replaced by the vinyl group in the substrate in this problem) or by the one shown in the answer to Problem 6.17.

(l) This reaction is a variation of the hydroformylation reaction. Transmetallation of Rh(I)(acac) with the alkylmercury(I) compound gives ClHg(acac) and an alkylrhodium(I) compound. Oxidative addition of H\(_2\) gives a Rh(III) compound, and coordination and insertion of CO gives the acylrhodium(III) compound. Reductive elimination then gives the product and regenerates Rh(I) — but as a Rh–H, not as Rh(acac).
Once Rh(I)–H is generated, the transmetallation between it and R–HgCl gives Rh(I)–R and H–HgCl. The latter compound decomposes to Hg(0) and HCl.

3. (a) Make: C1–C11, C8–C10. Break: C1–OAc, C8–C9. Co$_2$(CO)$_6$–alkyne complexes are prone to form cations at the propargylic position because the C–Co bonds hyperconjugatively stabilize the cation. The C10=C11 π bond can add to a C1 cation. Pinacol rearrangement (1,2-shift) then breaks the C8–C9 bond. Loss of H$^+$ from O completes the sequence.
(b) Addition of Co$_2$(CO)$_8$ to an alkyne forms the Co$_2$(CO)$_6$–alkyne complex. Propargyl cation formation is thereby enhanced. The Lewis acid coordinates to the less hindered OEt group, converting it into a good leaving group. It leaves to give the propargyl cation, which is attacked by the alkene to form the eight-membered ring. Loss of Me$_3$Si$^+$ gives the product. Because of ring strain, the eight-membered ring could not form if the alkyne were not coordinated to Co$_2$(CO)$_6$. The Co$_2$(CO)$_6$ both reduces the bond angles around the “alkyne” C’s and reduces the entropic barrier to eight-membered ring formation by holding the two “alkyne” substituents near one another.

(c) Make: C1–C8, C2–C6, C7–C8. Break: Co–C1, Co–C2, Co–C8.
Conversion of a Co$_2$(CO)$_6$-alkyne complex into a cyclopentenone is the Pauson–Khand reaction. It proceeds by loss of CO from one Co to make a 16-electron complex, coordination and insertion of the C6=C7 π bond into the C2–Co bond to make the C2–C6 bond and a C7–Co bond, migratory insertion of CO into the C7–Co bond to make the C7–C8 bond, reductive elimination of the C1–C8 bond from Co, and decomplexation of the other Co from the C1=C2 π bond. The mechanism is discussed in the text (Section B.1.f).

(d) Make: C1–C11, C4–C8. Break: C8–C9. Ti is in the (IV) oxidation state, so it is d0. Since we are forming new bonds from C4 to C8 and C1 to C11, and both C8 and C11 are electrophiles, both C1 and C4 must act as nucleophiles. Normally in a diene one terminus acts as a nucleophile and one terminus acts as an electrophile. The role of the Ti, then, is to supply the necessary electrons. But Ti(IV) is not a reducing agent, so the role of the Grignard reagent must be to reduce the Ti.

Addition of the Grignard to Ti(O-i-Pr)$_4$ will displace two i-PrO$^-$ groups and give (i-PrO)$_2$Ti(i-Pr)$_2$. β-Hydride abstraction (or β-hydride elimination followed by reductive elimination) then gives a Ti(II)–alkene complex ↔ titanacyclop propane. Coordination of the C3=C4 π bond and loss of propene gives a new titanacyclop propane; coordination of O10 promotes the formation of this particular titanacyclop propane. Insertion of the C8=C10 bond into the Ti–C4 bond forms the crucial C4–C8 bond. Expulsion of EtO$^-$ from C8 gives the lactone; the EtO$^-$ can coordinate to Ti(IV). There is still a Ti–C3 bond, so C3 is nucleophilic, as is C1 by vinylology. Nucleophilic addition of C1 to C11 and aqueous workup gives the product.
(a) transmetallation; (b) β-hydride abstraction; (c) ligand substitution; (d) insertion; (e) β-alkoxy elimination; (f) coordination.

(e) Make: C2–I, C3–C4. Break: C2–Br. Since C4 is electrophilic, C3 must be made nucleophilic. This would be the role of the Zr complex.

Addition of BuLi to ArBr results in halogen–metal exchange to give ArLi. Addition of Cp₂Zr(Me)Cl to ArLi gives transmetallation to give Cp₂Zr(Me)Ar and LiCl. We need to make a Zr–C3 bond in order to render C3 nucleophilic. This can be done by a β-hydride abstraction reaction to give a zirconacyclop propane. Insertion of the C4≡N bond into the C3–Zr bond gives the crucial C3–C4 bond. We still need to form the C2–I bond. Addition of I₂ cleaves the C2–Zr bond and gives the C2–I bond. Aqueous workup cleaves the N–Zr bond to give the observed product.
(f) This reaction proceeds via mechanisms similar to the previous two problems. The Grignard reagent reduces Ti(IV) to a Ti(II)–propene complex. Exchange of propene with the imine gives a titanaziridine complex. Insertion of the alkyne into the C–Ti bond gives a titanapyrrolidine. Addition of I₂ cleaves the C–Ti bond in favor of a C–I bond. Aqueous workup then gives the product.

(g) Make: C₂–C₃. C₃ is electrophilic, so C₂ must be made nucleophilic.

Addition of an alkene to a compound containing a metal–H bond usually results in insertion, and it does in this case, too, to give the stabler 1° alkylmetal. Addition of CuBr to this complex might result in transmetallation, to give a C₂–Cu bond. Addition of the copper compound to the unsaturated imide gives conjugate addition, perhaps by coordination of the C₃=C₄ π bond and insertion into the C₂–Cu bond. Workup gives the observed product.

(h) Hg(II) salts coordinate to alkenes and make them more electrophilic. In this case, the N can attack the alkene–Hg complex, giving an alkylmercury intermediate.
The NaBH₄ replaces the Hg–O₂CCF₃ bond with a Hg–H bond.

Free-radical decomposition of the alkylmercury hydride then occurs to replace the C–Hg bond with a C–O bond, with the O coming from O₂. The free-radical reaction gives a hydroperoxide C–OOH.

Finally, the hydroperoxide is reduced to the alcohol C–OH by excess NaBH₄.

(i) Make: C₁–C₃, C₁–C₁₀, C₃–C₄, C₅–C₉. Break: C₁–Cr₂, C₃–Cr₂.
The first step is cycloaddition of the Cr=C3 bond to the alkyne to make the C3–C4 bond. The chromacyclobutene undergoes electrocyclic ring opening to give a new Cr=C3 bond, which undergoes intramolecular [2 + 2] cycloaddition with the other alkyne to form the C5–C9 bond. The new chromacyclobutene undergoes electrocyclic ring opening to give a new Cr=C10 bond. Insertion of CO into the Cr=C10 bond gives the ketene, which undergoes electrocyclic ring closing to give the product.

(j) Going from starting material to product, an O is replaced by a CH$_2$ group. The CH$_2$ group must come from Cp$_2$TiMe$_2$. The missing O must go to Ti. The question is, which O is the missing one: O8 or O9. Even though the product has a carbonyl, that does not mean that the carbonyl O in the product is O9, as in the starting material. In fact, because O9 in the starting material is more reactive, it in fact is the one that reacts with Ti and ends up excised from the starting material. Make: C1–C10, C7–C10, O9–Ti. Break: C3–O8, C7–O9, Ti–C10, Ti–C11.
The first step is α-hydride abstraction in Cp_2TiMe_2 to cleave the C11–Ti bond and give $\text{Cp}_2\text{Ti}=\text{CH}_2$. This compound undergoes $[2 + 2]$ cycloaddition with the C7=O9 bond to give new C7–C10 and O9–Ti bonds, and $[2 + 2]$ retrocycloaddition cleaves the Ti–C10 bond. Finally, the diene undergoes a Claisen rearrangement to give the product.

4. Oxidative addition of Pd(0) to a cis-dihaloethylene gives an intermediate that can undergo β-halide elimination. The C–Br or C–I bond is more prone to undergo β-elimination than the much stronger C–Cl bond. The transmetallation and reductive elimination steps of the Sonogashira coupling have more time to occur when a C–Cl bond is β to Pd than when a C–Br or C–I bond is β to Pd.
The Art of Writing Reasonable Organic Reaction
Mechanisms
Grossman, R.B.
2003, XVI, 360 p. 34 illus., Hardcover
ISBN: 978-0-387-95468-4