Answers To Chapter 5 In-Chapter Problems.

If this compound were not a radical, you might suspect a [1,2] sigmatropic rearrangement. However, radicals do not undergo such rearrangements. The C4 radical can make a bond to C2 by adding to the π bond. Then the C3–C2 bond can break by fragmentation.

Note: This reaction involves a polar acidic mechanism, not a free-radical mechanism! It is a Friedel–Crafts alkylation, with the slight variation that the requisite carbocation is made by protonation of an alkene instead of ionization of an alkyl halide. Protonation of C4 gives a C3 carbocation. Addition to C1 and fragmentation gives the product.

Step 2. Only a C–O bond is made.
The presence of O_2 clues you in that this is a free-radical mechanism, specifically a free-radical substitution. Because it is an intermolecular substitution reaction, it probably proceeds by a chain mechanism. As such it has three parts: initiation, propagation, and termination. (We do not draw termination parts in this book.) The initiation part turns one of the stoichiometric starting materials into an odd-electron radical. This can be done here by abstraction of $H\cdot$ from C by O_2.

Initiation:

$$
\text{CH}_3\text{CH}_3\text{H} \cdot \cdot \cdot \text{O} \cdot \text{O} \cdot
\to
\text{CH}_3\text{H} \cdot \text{CH}_3 \cdot
+ \text{HO} \cdot \text{O} \cdot
$$

The propagation part begins with the radical generated in the initiation part, and it continues until all the starting materials are converted into products. Every individual step in the propagation part must have an odd number of electrons on each side of the arrow, and the last step must regenerate the radical that was used in the first step. Here the C radical combines with O_2 to give an O radical, and this O radical abstracts $H\cdot$ from starting material to give the product and to regenerate the C radical.

Propagation:

$$
\text{CH}_3\text{CH}_3\text{CH}_3\text{H} \cdot \cdot \cdot \text{O} \cdot \text{O} \cdot
\to
\text{CH}_3\text{O} \cdot \text{OOH}
+ \text{HO} \cdot \text{O} \cdot
$$

Although it is tempting to draw the following mechanism, the temptation should be resisted because it is not a chain mechanism.

$$
\text{CH}_3\text{CH}_3\text{H} \cdot \cdot \cdot \text{O} \cdot \text{O} \cdot
\to
\text{CH}_3\text{CH}_3 \cdot
+ \text{HO} \cdot \text{O} \cdot
$$

OHO

Step 3. The numbering of the atoms in this polar acidic mechanism is not straightforward, because it is
not clear whether C1 ends up bound to O3 or O4. However, if it ends up bound to O3, then we can draw a 1,2-alkyl shift (break C1–C2, make C1–O3) with expulsion of a leaving group (break O3–O4). Then O4 can add to the new C2 carbocation, and the resulting hemiacetal can collapse to phenol and acetone.

Actually, a two-step 1,2-alkyl shift has to be drawn, because Ph groups do not undergo concerted 1,2-shifts; instead their π bonds participate in an addition–fragmentation process.

5.3. This addition reaction proceeds by a chain mechanism.

In the initiation part, one of the stoichiometric starting materials is converted into a free radical. The BzO- produced from (BzO)$_2$ can abstract H· from BuSH to give BuS·.
Chapter 5

Initiation:

\[
\begin{align*}
\text{BzO} \cdot \text{OBz} & \xrightarrow{\Delta} 2 \cdot \text{OBz} \\
\text{BzO} \cdot \text{H} \cdot \text{SBu} & \rightarrow \text{BzO} \cdot \text{H} \cdot \text{SBu}
\end{align*}
\]

In the propagation part, BuS· adds to the alkene to give an alkyl radical, which abstracts H· from BuSH to give the product and to regenerate the starting radical.

Propagation:

5.4. This addition reaction proceeds by a chain mechanism.

\[
\begin{align*}
\text{H} \equiv \equiv \text{SiMe}_3 & \xrightarrow{\text{Bu}_3\text{Sn} \cdot \text{H}} \text{cat. (BzO)}_2 \rightarrow \text{Bu}_3\text{Sn} \cdot \text{SiMe}_3
\end{align*}
\]

In the initiation part, the BzO· produced from (BzO)₂ can abstract H· from Bu₃SnH to give Bu₃Sn·.

Initiation:

\[
\begin{align*}
\text{BzO} \cdot \text{OBz} & \xrightarrow{\Delta} 2 \cdot \text{OBz} \\
\text{BzO} \cdot \text{H} \cdot \text{SnBu}_3 & \rightarrow \text{BzO} \cdot \text{H} \cdot \text{SnBu}_3
\end{align*}
\]

In the propagation part, Bu₃Sn· adds to the alkyne to give an alkenyl radical, which abstracts H· from Bu₃SnH to give the product and to regenerate the starting radical.

Propagation:

\[
\begin{align*}
\text{Bu}_3\text{Sn} \cdot \text{H} \equiv \equiv \text{SiMe}_3 & \rightarrow \text{Bu}_3\text{Sn} \cdot \text{SiMe}_3
\end{align*}
\]

This is overall a substitution reaction — the C2–Br1 and Sn14–H σ bonds are swapped — so it is almost certainly a chain reaction. No initiator is listed, but it is likely that ambient air provides enough O₂ to abstract H· from Sn14.

Initiation:

\[\cdot \text{O-O} \cdot \text{SnBu}_3 \rightarrow \cdot \text{O-H} \cdot \text{SnBu}_3 \]

Bu₃Sn· abstracts Br1 from C2. The C2 radical then adds to C6 to give a C7 radical, which adds to C12 to give a C13 radical. The C13 radical abstracts H· from Bu₃SnH to give the product and regenerate Bu₃Sn·.

Propagation:

Bu₃Sn· abstracts Br1 from C2. The C2 radical then adds to C6 to give a C7 radical, which adds to C12 to give a C13 radical. The C13 radical abstracts H· from Bu₃SnH to give the product and regenerate Bu₃Sn·.

AIBN is a very common initiator of free radical reactions. The radical derived from its fragmentation abstracts H· from Ph₃SnH to give Ph₃Sn·.

Initiation:

- Ph₃Sn· abstracts Br1 from C2. The C2 radical then adds to C6 to give a C7 radical, which adds to C9 to give a C10 radical. (Why not have C7 add to C12 instead of C9 at this point? Because addition to C9 is intramolecular and forms a five-membered ring, making this addition very fast.) Now C10 adds to C11 to give a C12 radical, which can then add to C7 to give a C6 radical. C6 then abstracts H· from Ph₃SnH to give the product and regenerate Ph₃Sn·.

Propagation:

The initiation is the same as for 5.5(b). In the propagation part, Sn· abstracts I· from C5. The C5 radical then adds to C7 of CO to make a new C7 radical. The C7 radical adds to C2 to make a C1 radical, which adds to C7’ of a second equivalent of CO to make a C7’ radical. C7’ then abstracts H· from Bu3SnH to give the product and regenerate Bu3Sn·.

Propagation:
5.7(a). One C–C bond is made, and no bonds are broken.

\[
\text{EtO}_2\text{C} + \text{EtO}_2\text{C} \rightarrow \text{EtO}_2\text{C} + \text{EtO}_2\text{C} \]

The \(t\)-BuO· abstracts H· from malonate in the initiation part. A free radical addition mechanism like the one in problem 5.3 ensues.

Initiation:

\[
t\text{-BuO} \quad \Delta \quad 2 \cdot \text{Or-Bu}
\]

Propagation:

5.7(b). Again, one C–C bond is made, and no bonds are broken.
Intermolecular free-radical addition reactions almost always proceed by chain mechanisms. Here light photoexcites acetone, and $O\cdot$ then abstracts $H\cdot$ from the α-position of another molecule of acetone to complete the initiation.

Initiation:

\[
\text{H}_3\text{C} - \text{C} = \text{O} \xrightarrow{hv} \text{O} \cdot \xrightarrow{H} \text{H}_3\text{C} - \text{CH}_3
\]

Propagation proceeds as in problem 5.7(a).

Propagation:

Initiation proceeds as usual. Abstraction by Sn_9 of I_8 from C_7 gives a C_7 radical, which adds to the C_2 carbonyl. Cleavage of the C_2–C_3 bond gives a C_3 radical, which abstracts $H\cdot$ from Bu_3SnH to give the product and complete the chain.
Propagation:

\[
\begin{array}{c}
\text{CO}_2\text{Et} \quad \text{I} \quad \cdot \text{SnBu}_3 \quad \text{CO}_2\text{Et} \\
\rightarrow \quad \text{CO}_2\text{Et} \quad \rightarrow \quad \text{CO}_2\text{Et} \\
\end{array}
\]

Unimolecular photochemical eliminations usually proceed by nonchain mechanisms. Photoexcitation gives an N5–O6 1,2-diradical. Abstraction of H· from C2 by O6 then gives a 1,4-diradical, which can collapse to an o-xylylene type of compound. Electrocyclic ring closure forms the O7–C2 bond and reestablishes aromaticity. Cleavage of the N5–O7 bond then gives a hemiacetal, which undergoes cleavage by the usual acid- or base-catalyzed mechanism to give the observed products.

5.10. Addition of one electron to the ketone gives a ketyl (·C–O–), and addition of another electron gives a carbanion, which is protonated by EtOH. Workup then gives the reduced compound. Note how curved arrows are not used to show the movement of electrons in electron transfer steps.
5.11. Only the C–O bond is cleaved, but several C–H bonds are made.

First the ketone is reduced to the alkoxide according to the mechanism shown in problem 5.9. This alkoxide is in equilibrium with the corresponding alcohol. Addition of another electron to the benzene π system gives a radical anion, which expels –OH to give a radical. This radical is reduced again and then protonated to give ethylbenzene. Another electron is added, protonation occurs again, another electron is added, and protonation occurs once more to give the observed product.
5.12. No need to number: only a N–C bond is cleaved. KMnO₄ is a one-electron oxidizing agent, and the HOMO of the starting material is the N lone pair, so the first step is electron transfer to give the N-based radical cation. N is somewhat electronegative, and it is unhappy about being electron-deficient, so it looks to its neighbors for another electron. It can gain such an electron from a neighboring C–H bond, if another species can take care of the H⁺. The [MnO₄]²⁻ radical dianion can use an O atom and an unpaired electron to abstract H from a CH₃ group to give an iminium ion. Hydrolysis of the iminium ion by a conventional two-electron mechanism gives the secondary amine.

Deprotonation of C6 gives an ylide, which undergoes a 1,2-shift (break C4–S5, make C4–C6). This 1,2-shift occurs in two steps: the C4–S5 bond homolyzes to give a radical and a radical cation, and recombination of C4 and C6 occurs to give an intermediate ring-contracted by one atom. The same process is repeated on the other side to give the observed product. Whether one or the other regioisomer is obtained depends on whether C1 or C3 is deprotonated for the second ring contraction.

Answers To Chapter 5 End-of-Chapter Problems.

1. (a) MTBE is less prone to autoxidize than ether and THF. In MTBE, only one C attached to O bears H's, and abstraction of one of these H's gives a 1° radical. In ether and THF, both C's bear H's, and abstraction of one of these H's gives a 2° radical. 2° Radicals are much more stable than 1° radicals, so ether and THF are more prone to autoxidize.

(b) ETBE is of less interest than MTBE because it is more prone to autoxidize. Abstraction of H- from the
H-bearing C adjacent to O gives a 2° radical of comparable stability to the radical derived from ether and THF.

Incidentally, MTBE also forms an azeotrope with H₂O (like benzene does), so there is no need to dry it over MgSO₄ or 4 Å molecular sieves after an extraction, as must be done with both ether and THF. MTBE also has a much higher flash point than ether.

(c) Acidic conditions are required.

(d) Ethanol is made from corn — hence the name, grain alcohol. If ETBE were required to be used in gasoline, it would mean megabucks for corn producers.

(e) One reason is that MTBE is much more polar and hence more soluble in groundwater than gasoline. The other reason is more subtle. The primary mechanism by which gasoline is degraded is by free-radical processes — either by O₂ in the air, or by bacteria with oxidizing enzymes that proceed by one-electron mechanisms. It is easier to abstract H· from gasoline (which has 2° and 3° C–H bonds) than is it to abstract H· from MTBE.

2. (a) CFCs decompose most readily during the Antarctic spring and in the stratosphere. This suggests that their decomposition is catalyzed by UV light. The action of UV light on CFCs is likely to cause homolysis of a C–Cl bond. In fact, Cl· radicals are the agents that catalyze ozone depletion.

(b) HCFCs have a C–H bond, whereas CFCs don’t. In the lower atmosphere, O₂ (actually, HO·) can abstract H· from an HCFC to give an alkyl radical, which can then undergo further reactions. This decomposition pathway is not open to CFCs, so they remain intact until they reach the stratosphere.

3. (a) This is a standard free-radical addition reaction. Bu₃Sn· abstracts I· from the alkyl iodide, the alkyl radical adds to the acrylate ester, and abstraction of H· from HSnBu₃ completes the chain. The Bu₃SnI produced in the course of the reaction is reduced by NaBH₄ back to HSnBu₃. Initiation steps other than the one shown (e.g., C–I bond homolysis) may be envisioned. The termination steps are the usual radical–radical combination and disproportionation reactions.

\[
\text{Initiation:} \quad \text{MeO}_2\text{C} \quad \xrightarrow{\text{hv}} \quad \text{MeO}_2\text{C} \quad \cdot \quad \text{H–SnBu}_3 \quad \rightarrow \quad \cdot \text{SnBu}_3
\]
The first reaction is a 1,3-dipolar cycloaddition. The best resonance structure for the dipolarophile puts the positive charge on C5 and the negative charge on C4. This makes C5 most likely to be attacked by O1.

Now the second step. Make: C7–N2. Break: O1–N2, C5–C7. Heating the tricyclic compound causes thermolysis of the weak O1–N2 bond. The cycloproplyoxy radical quickly ring-opens to put the radical center at C7; then radical–radical recombination between C7 and N2 gives the product.

The first part is a Birch reduction, with NH₃ as the proton source. It gives the carboxylate enolate as the initial product. When the alkyl halide is added, the enolate acts as a nucleophile to give the C3–C7 bond in an SN₂ reaction.

Refluxing in acid protonates the enol ether to give a nice stable carbocation. Loss of CO₂ from this carbocation gives a new dienol ether. Acidic hydrolysis of this dienol ether gives the product enone in the usual fashion.

(d) Light promotes an electron from the π to the π* orbital in the aromatic C=O bond to give a 1,2-
diradical.

\[\text{Ph} \text{O} \text{O} \text{O} \text{Me} \text{Me} \text{CO}_2 \text{Me} \rightarrow \text{Ph} \text{O} \text{O} \text{O} \text{Me} \text{Me} \text{CO}_2 \text{Me} \]

The O radical can then undergo Norrish type II cleavage, abstracting H· from C1 in a six-membered TS, to give the cyclobutanone and the ketenol.

\[\text{Ph} \text{O} \text{O} \text{O} \text{Me} \text{Me} \text{CO}_2 \text{Me} \rightarrow \text{Ph} \text{O} \text{O} \text{O} \text{Me} \text{Me} \text{CO}_2 \text{Me} + \text{PhCHO} \]

Alternatively, the C radical can abstract H· from C1 in a five-membered TS to give the cyclobutanone, CO, and PhCHO.

(e) This is an acyloin condensation. The two ketones are reduced to ketyls, which couple and lose EtO⁻. The 1,2-dione is then reduced further by Na to give an ene-1,2-diolate, which after workup gives the α-hydroxyketone.

(f) A new C1–C6 bond is formed. Initiation has an alkoxy radical abstract H· form the C1–H bond to make a benzylic radical. Propagation consists of cyclization, then H· abstraction by C7 from a C1–H bond.
(g) Product 1: Make: C1–O7, C3–C5. Break: C1–C5. Product 2: Make: C1–H. Break: C1–C5. In both compounds, the C1–C5 bond is broken, suggesting that the first step in both cases is Norrish type I cleavage.

Light induces formation of a 1,2-diradical. Norrish type I cleavage to give the stabler of the two possible 1,5-diradicals then occurs.

The diradical can undergo radical–radical recombination at C3–C5 to give a ketene, which reacts with CH$_3$OH to give the ester product via an awful zwitterionic intermediate.
Alternatively, C1 of the diradical can abstract H· from C4 in a disproportionation reaction to give the dienal product.

(h) Two molecules of O₂ are incorporated into this autoxidation product, in addition to one equivalent of thiophenol. Initiation proceeds by H· abstraction from PhSH by O₂. Propagation has PhS· add to the less substituted alkene to give an alkyl radical, which reacts with O₂ to give a peroxy radical. This adds intramolecularly to the other alkene to give a new alkyl radical, which combines with O₂ again to give a new peroxy radical. The peroxy radical abstracts H· from PhSH to complete the chain.

\[
\text{Initiation:} \quad \text{PhS} - \text{H} \quad \cdot - \text{O} - \text{O}^- \quad \rightarrow \quad \text{PhS} \cdot \quad + \quad \text{H} - \text{O} - \text{O}^- \\
\text{Propagation:}
\]

\[
\text{PhS} \cdot \quad \text{add to less substituted alkene} \quad \rightarrow \quad \text{PhS} \cdot \quad \text{alkyl radical} \quad + \quad \text{PhS} \cdot \quad \text{peroxy radical}
\]

\[
\text{PhS} \cdot \quad \text{add to other alkene} \quad \rightarrow \quad \text{PhS} \cdot \quad \text{alkyl radical} \quad + \quad \text{PhS} \cdot \quad \text{peroxy radical}
\]

\[
\text{PhS} \cdot \quad \text{peroxy radical} \quad \text{abstracts H·} \quad \text{from PhSH} \quad \rightarrow \quad \text{PhS} \cdot \quad \text{alkyl radical} \quad + \quad \text{PhS} \cdot \quad \text{peroxy radical}
\]
(i) This reaction combines the Barton deoxygenation with an addition reaction. In the propagation part, Bu₃Sn· adds to S of the C=S bond to give an alkyl radical, which fragments to give the dithiocarbonate and a new alkyl radical. The alkyl radical then adds to acrylonitrile to give yet another alkyl radical, which abstracts H· from Bu₃SnH to complete the chain.

Propagation:

(j) The Cl in the product could come from either the S–Cl bond or the C–Cl bond, but since C still has three Cl’s attached in the product, it probably comes from the S–Cl bond. Make: C1–Cl4, C2–H. Break: C1–H, C2–S3, S3–Cl4.

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{Cl} + &\text{HCCl}_3 + \text{SO}_2 \rightarrow \\
\text{BzO·} &\text{ is generated in the initiation. It abstracts H· from toluene to give a benzyl radical.}
\end{align*}
\]

Initiation:

\[
\text{BzO·} \rightarrow \Delta 2 \text{ BzO·}
\]
Benzyl radical abstracts Cl₄ from S₃ to give benzyl chloride and Cl₃CSO₂ radical. This radical then fragments to give SO₂ and ·CCl₃, which then abstracts H· from toluene to complete the chain.

Propagation:

(k) The by-product is CO. Make: none. Break: C1–C2, C1–C6, C3–C5.

Photoexcitation of the ketone gives a 1,2-diradical, which undergoes Norrish type I cleavage of the C1–C2 bond to give a 1,5-diradical. The cyclopropylcarbinyl radical opens up to give a 1,3-diradical, which finally loses CO to give the observed diene. Some of these steps may be concerted.

(l) This radical-catalyzed isomerization reaction is a variation of the Bu₃SnH-promoted reductive cycliza-
tion of haloalkenes that we’ve seen before. Bu₃SnH is no longer a stoichiometric starting material, so it cannot appear in the propagation part of the mechanism. Instead, it is an initiator that is used to generate small amounts of the alkyl radical by abstraction of I⁻ from the starting material.

Initiation:

\[\text{Bu}_3\text{SnH} \quad \text{O}_2 \quad \text{Bu}_3\text{Sn} \cdot \]

In the propagation part of the mechanism, the alkyl radical adds to the triple bond to give a vinyl radical, which abstracts I⁻ from the starting material to give the product and to complete the chain.

Propagation:

(m) This reaction combines a Barton deoxygenation with a free-radical allylation. Bu₃Sn⁻ is the chain-carrying species.

Initiation:

\[\text{CH}_3 \quad \text{N} = \text{N} \quad \text{CN} \quad \text{CH}_3 \quad \Delta \quad 2 \quad \text{CH}_3 \quad \text{CN} \quad + \quad \text{N}_2 \]

\[\text{H}_3\text{C} \quad \text{CN} \quad \text{SnBu}_3 \quad \rightarrow \quad \text{H}_3\text{C} \quad \text{CN} \quad \text{SnBu}_3 \]

\[\text{H}_3\text{C} \quad \text{CN} \quad \text{SnBu}_3 \quad \rightarrow \quad \text{Bu}_3\text{Sn} \cdot \]

Propagation:

\[\text{OH} \quad \text{PhO} \quad \text{S} \quad \text{Bu}_3\text{Sn} \quad \rightarrow \quad \text{OH} \quad \text{PhO} \quad \text{S} \quad \text{SnBu}_3 \]
(n) This free-radical substitution appears to proceed by direct attack of Bu$_3$Sn· on the C–N bond to give a Sn–N bond and a C radical. However, the N atom is quite sterically encumbered, and direct abstraction of a light atom by Bu$_3$Sn· is quite rare. A better mechanism has the Bu$_3$Sn· add to O of the N=O π bond to give a N-centered radical. Fragmentation of the C–N bond then gives a nitrite and the requisite alkyl radical, which abstracts H· from Bu$_3$SnH to complete the chain.

\[
\text{Initiation:} \quad \text{BzO–OBz} \xrightarrow{\Delta} 2 \text{BzO·}
\]

\[
\text{Propagation:}
\]

(o) In this Birch reduction, the first equivalent of Li reduces the acid to a carboxylate. The Birch reduction then proceeds normally until after the second electron transfer step, when elimination of MeO$^-$ occurs to give a new aromatic compound. Now Birch reduction proceeds again normally to give the observed product.
(p) This reaction is a standard free-radical addition reaction, except that the reaction takes place in an intramolecular fashion.

Propagation:

\[
\text{Bu}_3\text{Sn}^* \quad \text{SePh} \quad \text{Bu}_3\text{Sn}^+ \quad \text{PhSe} \quad \text{SnBu}_3
\]

(q) Make: C2–C6, C7–Cl. Break: C1–C2.
The weakest bond, the C=S π bond, will be selectively photoexcited. Fragmentation of the weak N–O bond (Norrish type I cleavage) gives a carboxy radical, which can fragment to give a C2 radical, which adds to the C6=C7 π bond to give a C7 radical, which abstracts Cl· from CCl₄ to give the product. The reaction may or may not be drawn as a chain reaction, depending on whether the rate of addition of the Cl₃C· radical to S of the C=S π bond is comparable in rate to the Norrish cleavage.

In both products, the C1–C2 bond has cleaved. Cleavage of this bond can occur by fragmentation of the C1 radical to give the C2 radical and CO. The C1 radical is generated by abstraction of H·.
Propagation:

\[
\begin{align*}
\text{Initiator} & \rightarrow \text{Product} + \text{CO} \\
\text{Product} & \rightarrow \text{Product} + \text{Product}
\end{align*}
\]

The first product is obtained by abstraction of H· from the starting material to complete the chain.

The second product still requires formation of the C2–C4 bond and cleavage of the C3–C4 bond. Addition of C2 to C4 is followed by fragmentation of the C2–C3 bond. The C3 radical then abstracts H· from the starting material to give the second product and to complete the chain.

The C1–C2 bond is quite weak. Homolysis of this bond gives a 1,3-diradical at C1 and C2. The C1 radical is allylically delocalized onto C4, also. Combination of the C2 radical with with the C4 radical gives the product.

(t) Another free-radical addition reaction. The initiator is benzophenone in its photoexcited state.
(u) Make: C3–H. Break: C3–C6, C5–H.

Photoexcitation of the ketone gives a 1,2-diradical. An unusual mode of cleavage for ketones that is neither Norrish type I nor II, cleavage of the C3–C6 bond, then occurs to give a new diradical. The unusual cleavage occurs here in order to relieve strain in the four-membered ring. A disproportionation reaction (six-membered TS) then gives an unsaturated enol, which tautomerizes (acid or base catalysis) to give the observed product.
(v) From starting material to first product, two equivalents of \(\text{CO}_2 \) are missing. First product: Make: C1–C14, C5–C10. Break: C1–C6, C5–C6, O7–O8, C9–C10, C9–C14, O15–O16. From starting material to second product, one equivalent of \(\text{CO}_2 \) is missing. Second product: Make: C1–C14, C5–O15. Break: C1–C6, C5–C6, O7–O8, C9–C14, O15–O16.

Heating cleaves a weak O–O bond homolytically to give two oxy radicals. Fragmentation of the C1–C6 and C9–C14 bonds gives two radicals which recombine to give a cyclic diacyl peroxide.

Homolytic cleavage of the O15–O16 bond gives a new diradical. This can lose either one or two equivalents of \(\text{CO}_2 \) before recombination to give the two observed products.

\(\text{OR} \)
(w) Make: C1–N3. Break: O2–N3. This is a Barton reaction. Homolytic cleavage of the O–NO bond gives an oxy radical which abstracts H· from the nearby C1. Combination of this radical with NO, then tautomerization, gives the oxime.

(x) Two sequential free-radical addition reactions occur. They may be stepwise or concerted.

Propagation:
(y) Reduction of the ketone by SmI$_2$ gives the ketyl. Addition of the C radical to ethyl acrylate gives a new radical, which undergoes further reduction by SmI$_2$ to give the ester enolate. Workup gives a γ-hydroxyester alcohol, which closes up to the lactone (cyclic ester).

(z) The Bu$_3$Sn· adds to the alkyne to give an alkenyl radical, which then undergoes intramolecular addition to give an alkyl radical. This radical is quenched from the less hindered side to put the carboxylate group in the more sterically hindered position.

Initiation:

\[
\begin{align*}
\text{Initiation:} & \quad \begin{array}{c}
\begin{array}{c}
\text{CH}_3 \\
\text{CN}
\end{array} \quad \text{N} \quad \text{N} \\
\text{CH}_3 \\
\text{CN} \quad \text{CH}_3 \quad \Delta \quad 2 \quad \begin{array}{c}
\text{CH}_3 \\
\text{CN}
\end{array} \\
\text{CH}_3 \\
\text{CN} \\
\text{CH}_3 \\
\text{CN} \\
\text{H}_3\text{C} \quad \text{H} \quad \text{H} \quad \text{H} \\
\end{array} \quad + \quad \begin{array}{c}
\text{H}_3\text{C} \\
\text{CN}
\end{array} \\
\cdot \text{SnBu}_3 \\
\cdot \text{SnBu}_3
\end{align*}
\]

The first step is electron transfer to the C=O \(\pi^* \) orbital to make the ketyl. This undergoes homolytic C3–C7 cleavage to give an enolate and a radical at C7. Under the reaction conditions, this radical is reduced by a second equivalent of Li to give a carbanion, which is protonated by NH\(_3\). The enolate is protonated on C9 upon workup.
(bb) Again, the easiest atoms to number in the product are C2, C9, and C4. In the product, the bridgehead C next to the carbonyl C2 is going to be either C1 or C3; this C is more likely to be C1, since it is bound to two CH2’s, and in the starting material C1 is bound to one CH and one CH2 while C3 is bound to no CH2’s. From there the numbering is clear. Make: Si–C9, C4–C2. Break: C2–C3, C4–C5.

This is an intermolecular reaction, so it’s going to be a chain process. Initiation has the AIBN-derived radical remove H from Si. In the propagation, the Si radical adds to C9. From there, two pathways are possible. Either we can make C4–C2, then cleave C3–C2, or we can cleave C2–C3, then make C4–C2. Either way, the final steps are the cleavage of C4–C5, then abstraction of H· from Si–H to start the propagation again.

Initiation:

\[
\begin{align*}
\text{Initiation:} & \quad \text{CH}_3 \quad \begin{array}{c} \text{CH}_3 \\ \text{CN} \end{array} & \quad \begin{array}{c} \text{N} = \text{N} \\ \text{CN} \end{array} & \quad \text{CH}_3 \\
& \quad \Delta & \quad 2 \quad \text{CH}_3 \quad \begin{array}{c} \cdot \\ \text{CN} \end{array} & \quad + & \quad \text{N}_2
\end{align*}
\]

\[
\begin{align*}
\text{Initiation:} & \quad \text{CH}_3 \quad \begin{array}{c} \text{CH}_3 \\ \text{CN} \end{array} & \quad \begin{array}{c} \text{CN} \\ \text{HN} \end{array} & \quad \begin{array}{c} \text{CH}_3 \\ \text{CN} \end{array} & \quad \Delta & \quad 2 \quad \text{CH}_3 \quad \begin{array}{c} \cdot \\ \text{CN} \end{array} & \quad + & \quad \text{N}_2
\end{align*}
\]

Propagation:
Either:

Or:

Enediynes tend to undergo Bergman cyclizations, and the C4–C9 bond can be made in this way. The C5 and C8 radicals produced thereby can each abstract H· from C1 and C12, respectively. Fragmentation of the C10–C11 bond, then radical–radical combination gives the product.
Alternatively, a retro-ene reaction cleaves the O10–C11 bond and gives a highly unsaturated ketene. The ketene can undergo cycloaromatization to give a diradical intermediate. H· abstraction and radical–radical recombination then give the product.

Fe(NO₃)₃ has the same reactivity as CAN, a one-electron oxidizing agent. The Fe(NO₃)₃ will remove the electron highest in energy from the substrate. Such an electron would have to be one of the unshared electrons of the O atoms. After removal of an electron from O2, the C3–C5 bond can fragment to give a C5 radical, which can add to C9 and generate a new radical at C10. The C10 radical then abstracts H· from 1,4-cyclohexadiene. Si1 is lost from O2 upon aqueous workup.
(ee) The purpose of Mn(OAc)$_3$ is to make an enoxy radical. This occurs by formation of the Mn(III) enolate followed by homolytic cleavage of the Mn–O bond. A cascade free-radical cyclization then occurs (either in one step or stepwise) to give the fully cyclized radical. Cu(OAc)$_2$ then promotes another one-electron oxidation to give a carbocation, which loses H$^+$ to give the product.

4. (a) The third step, combination of O$_2$ with a radical, is reasonable. The fourth step, abstraction of H· from an O–H bond by ROO·, is not reasonable, because the alkyldperoxy radical is much more stable than the alkoxy radical. The radical could abstract H·, but not from an O–H bond. The fifth step is reasonable, assuming that the benzyloxy radical could be formed in the first place. The sixth step, abstraction of RO–
from an RO–OH bond by a stable alkyl radical, is very doubtful. HO· is a very high energy species that is only very rarely seen in organic reactions, and reaction mechanisms claiming HO· as an intermediate or by-product must be viewed with great skepticism. (It is, however, an important biological radical.) Also, abstractions of first row atoms are not common, and the proposed ·OH abstraction reaction is expected to be quite slow.

(b) The fourth and fifth steps could be combined to give a reasonable step. That is, the peroxy radical could directly abstract H· from the benzylic bond in an intramolecular fashion to give a benzylic radical and the hydroperoxy compound. This would require a seven-membered TS, but at least the H· would be abstracted from a relatively weak bond. Unfortunately, this would not solve the problem of the sixth step.

A better possibility: PhCH2O− adds to C60. Then autoxidation of a benzylic C–H bond occurs to give the hydroperoxide. Then the C60 carbanion displaces OH− from the hydroperoxide to give the product.
The Art of Writing Reasonable Organic Reaction Mechanisms
Grossman, R.B.
2003, XVI, 360 p. 34 illus., Hardcover
ISBN: 978-0-387-95468-4