Topical Table of Contents

Agent Based Modeling and Simulation, Section Editor: Filippo Castiglione
Agent Based Computational Economics
Agent Based Modeling and Artificial Life
Agent Based Modeling and Computer Languages
Agent Based Modeling and Simulation, Introduction to
Agent Based Modeling, Large Scale Simulations
Agent Based Modeling, Mathematical Formalism for
Agent-Based Modeling and Simulation
Cellular Automaton Modeling of Tumor Invasion
Computer Graphics and Games, Agent Based Modeling in
Embodied and Situated Agents, Adaptive Behavior in
Interaction Based Computing in Physics
Logic and Geometry of Agents in Agent-Based Modeling
Social Phenomena Simulation
Swarm Intelligence

Autonomous Robotics, Complexity and Nonlinearity in, Section Editor: Warren Dixon
Adaptive Visual Servo Control
Cognitive Robotics
Complexity and Non-Linearity in Autonomous Robotics, Introduction to
Continuum Robots
Distributed Controls of Multiple Robotic Systems, An Optimization Approach
Distributed Robotic Teams: A Framework for Simulated and Real-World Modeling
Foraging Robots
Human Robot Interaction
Image Based State Estimation
Modular Self-Reconfigurable Robots
Motion Prediction for Continued Autonomy
Multiple Mobile Robot Teams, Path Planning and Motion Coordination in
Neuro-fuzzy Control of Autonomous Robotics
Self-replicating Robotic Systems
Software Architectures for Autonomy

Cellular Automata, Mathematical Basis of, Section Editor: Andrew Adamatzky
Additive Cellular Automata
Algorithmic Complexity and Cellular Automata
Cellular Automata and Groups
Cellular Automata and Language Theory
Cellular Automata as Models of Parallel Computation
Cellular Automata in Hyperbolic Spaces
Cellular Automata Modeling of Physical Systems
Cellular Automata on Triangular, Pentagonal and Hexagonal Tessellations
Cellular Automata with Memory
Cellular Automata, Classification of
Cellular Automata, Emergent Phenomena in
Cellular Automata, Universality of
Chaotic Behavior of Cellular Automata
Dynamics of Cellular Automata in Non-compact Spaces
Ergodic Theory of Cellular Automata
Evolving Cellular Automata
Firing Squad Synchronization Problem in Cellular Automata
Gliders in Cellular Automata
Growth Phenomena in Cellular Automata
Identification of Cellular Automata
Mathematical Basis of Cellular Automata, Introduction to
Phase Transitions in Cellular Automata
Quantum Cellular Automata
Reversible Cellular Automata
Self-organised Criticality and Cellular Automata
Self-Replication and Cellular Automata
Structurally Dynamic Cellular Automata
Tiling Problem and Undecidability in Cellular Automata
Topological Dynamics of Cellular Automata

Chaos and Complexity in Astrophysics, Section Editor: Steve N. Shore
Acceleration Mechanisms
Astronomical Time Series, Complexity in
Astrophysics, Chaos and Complexity in
Astrophysics: Dynamical Systems
Chaos and Complexity in Astrophysics, Introduction to
Cosmic Gravitational Background, Stochastic
Cosmic Strings
Exobiology (theoretical), Complexity in
Exobiology and Complexity
Orbital Dynamics, Chaos in
Self-Organization in Magnetohydrodynamic Turbulence
Space Plasmas, Dynamical Complexity in
Stellar Dynamics, N-body Methods for
Topological Magnetohydrodynamics and Astrophysics

Climate Modeling, Global Warming and Weather Prediction, Section Editor: Hartmut Grassl
Abrupt Climate Change Modeling
Climate Change and Agriculture
Climate Change and Human Health
Climate Change, Economic Costs of
Climate Modeling, Global Warming and Weather Prediction, Introduction to
Cryosphere Models
Regional Climate Models: Linking Global Climate Change to Local Impacts
Single Column Modeling of Atmospheric Boundary Layers
and the Complex Interactions with the Land Surface
Complex Networks and Graph Theory, Section Editor: Geoffrey Canright

- Community Structure in Graphs
- Complex Gene Regulatory Networks – From Structure to Biological Observables: Cell Fate Determination
- Complex Networks and Graph Theory
- Complex Networks, Visualization of
- Food Webs
- Growth Models for Networks
- Human Sexual Networks
- Internet Topology
- Link Analysis and Web Search
- Motifs in Graphs
- Non-negative Matrices and Digraphs
- Random Graphs, A Whirlwind Tour of
- Synchronization Phenomena on Networks
- World Wide Web, Graph Structure

Complexity in Computational Chemistry, Section Editor: Danail Bonchev

- Biochemistry, Chaotic Dynamics, Noise, and Fractal Space in
- Biological Complexity and Biochemical Information
- Biological Development and Evolution, Complexity and Self-Organization in
- Cellular Automata Modeling of Complex Biochemical Systems
- Composites, Multifunctional
- Computational Chemistry, Introduction to Complexity in
- Computer-Aided Design of the Reaction Site in Heterogeneous Catalysis
- DNA-templated Self-assembly of Protein Arrays and Highly Conductive Nanowires
- Drug Design with Artificial Intelligence Methods
- Drug Design with Artificial Neural Networks
- Drug Design with Machine Learning
- Drug Design, Molecular Descriptors in
- Information Theoretic Complexity Measures
- Molecular Evolution, Networks in
- Nanoscale Atomic Clusters, Complexity of
- Polymers, Nonlinearity in
- QSAR Modeling and QSAR Based Virtual Screening, Complexity and Challenges of Modern
- Quantum Similarity and Quantum Quantitative Structure-Properties Relationships (QQSPR)
- Self-assembled Materials
- Topological Complexity of Molecules

Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Section Editor: William H. K. Lee

- Brittle Tectonics: A Non-linear Dynamical System
- Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to
- Crustal Deformation During the Seismic Cycle, Interpreting Geodetic Observations of
- Earthquake Clusters over Multi-dimensional Space, Visualization of
- Earthquake Damage: Detection and Early Warning in Man-Made Structures
- Earthquake Early Warning System in Southern Italy
- Earthquake Engineering, Non-linear Problems in
- Earthquake Forecasting and Verification
- Earthquake Location, Direct, Global-Search Methods
- Earthquake Magnitude
- Earthquake Monitoring and Early Warning Systems
Earthquake Networks, Complex
Earthquake Nucleation Process
Earthquake Occurrence and Mechanisms, Stochastic Models for
Earthquake Scaling Laws
Earthquake Source Parameters, Rapid Estimates for Tsunami Warning
Earthquake Source: Asymmetry and Rotation Effects
Earthquakes, Dynamic Triggering of
Earthquakes, Electromagnetic Signals of
Earth’s Crust and Upper Mantle, Dynamics of Solid-Liquid Systems in
Geo-Complexity and Earthquake Prediction
GPS: Applications in Crustal Deformation Monitoring
Ground Motion: Complexity and Scaling in the Near Field of Earthquake Ruptures
Infrasound from Earthquakes, Tsunamis and Volcanoes
Pressure Impulses Generated by Bubbles Interacting with Ambient Perturbation
Seismic Wave Propagation in Media with Complex Geometries, Simulation of
Seismic Waves in Heterogeneous Earth, Scattering of
Seismicity, Critical States of: From Models to Practical Seismic Hazard Estimates Space
Seismicity, Statistical Physics Approaches to
Slug Flow: Modeling in a Conduit and Associated Elastic Radiation
Submarine Landslides and Slow Earthquakes: Monitoring Motion with GPS and Seafloor Geodesy
Tomography, Seismic
Tsunami Earthquakes
Tsunami Forecasting and Warning
Tsunami Inundation, Modeling of
Tsunamis, Inverse Problem of
Volcanic Eruptions, Explosive: Experimental Insights
Volcanic Eruptions: Cyclicity During Lava Dome Growth
Volcanic Eruptions: Stochastic Models of Occurrence Patterns
Volcanic Hazards and Early Warning
Volcano Seismic Signals, Source Quantification of
Volcanoes, Non-linear Processes in
Wedge Mechanics: Relation With Subduction Zone Earthquakes and Tsunamis

Computational and Theoretical Nanoscience, Section Editor: Yong Suk Joe

Carbon Nanotubes, Thermo-mechanical and Transport Properties of
Charge Based Solid-State Flying Qubits
Computational and Theoretical Nanoscience, Introduction to
Field Computation in Natural and Artificial Intelligence
Geometric Phase and Related Phenomena in Quantum Nanosystems
Multimillion Atom Simulations with Nemo3D
Nanoscale Processes, Modeling Coupled and Transport Phenomena in Nanotechnology
Quantum Dot Spin Transistors, Self-consistent Simulation of
Quantum Dots: Fano Resonances in Aharonov–Bohm Ring
Quantum Impurity Physics in Coupled Quantum Dots
Quantum Phenomena in Semiconductor Nanostructures
Quantum Simulations of Ballistic Nanowire Field Effect Transistors
Resonances in Electronic Transport Through Quantum Wires and Rings
Semiclassical Spin Transport in Spin-Orbit Coupled Systems
Spin Dependent Exchange and Correlation in Two-Dimensional Electron Layers
Spin Dynamics in Disordered Solids
Spin-polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena
Tight-Binding Molecular Dynamics for Carbon and Applications to Nanostructure Formation
Tunneling Through Quantum Dots with Discrete Symmetries
Viral Protein Nano-Actuators, Computational Studies of Bio-nanomachines

Data Mining and Knowledge Discovery, Section Editor: Peter Kokol

Data and Dimensionality Reduction in Data Analysis and System Modeling
Data-Mining and Knowledge Discovery, Introduction to
Data-Mining and Knowledge Discovery, Neural Networks in
Data-Mining and Knowledge Discovery: Case Based Reasoning, Nearest Neighbor and Rough Sets
Decision Trees
Discovery Systems
Genetic and Evolutionary Algorithms and Programming: General Introduction and Application to Game Playing
Knowledge Discovery: Clustering
Machine Learning, Ensemble Methods in
Manipulating Data and Dimension Reduction Methods: Feature Selection

Ecological Complexity, Section Editor: Bai-Lian Li

Ecological Complexity
Ecological Topology and Networks
Entropy Maximization and Species Abundance
Human-Environment Interactions, Complex Systems Approaches for Dynamic Sustainable Development

EiC Selections, Section Editor: Robert A. Meyers

Catastrophe Theory
Coordination Dynamics
Infinite Dimensional Controllability
Philosophy of Science, Mathematical Models in
Self-organizing Systems

Ergodic Theory, Section Editor: Bryna Kra

Chaos and Ergodic Theory
Entropy in Ergodic Theory
Ergodic Theorems
Ergodic Theory on Homogeneous Spaces and Metric Number Theory
Ergodic Theory, Introduction to
Ergodic Theory: Basic Examples and Constructions
Ergodic Theory: Fractal Geometry
Ergodic Theory: Interactions with Combinatorics and Number Theory
Ergodic Theory: Non-singular Transformations
Ergodic Theory: Recurrence
Ergodic Theory: Rigidity
Ergodicity and Mixing Properties
Isomorphism Theory in Ergodic Theory
Joinings in Ergodic Theory
Measure Preserving Systems
Pressure and Equilibrium States in Ergodic Theory
Smooth Ergodic Theory
Spectral Theory of Dynamical Systems
Symbolic Dynamics
Topological Dynamics
Finance and Econometrics, Section Editor: Bruce Mizrach

Bayesian Methods in Non-linear Time Series
Corporate and Municipal Bond Market Microstructure in the U.S.
Econometrics: Models of Regime Changes
Econometrics: Nonlinear Cointegration
Econometrics: Panel Data Methods
Econophysics, Observational
Finance and Econometrics, Introduction to
Finance, Agent Based Modeling in
Financial Economics, Fat-Tailed Distributions
Financial Economics, Non-linear Time Series in
Financial Economics, Return Predictability and Market Efficiency
Financial Economics, The Cross-Section of Stock Returns and the Fama-French Three Factor Model
Financial Economics, Time Variation in the Market Return
Financial Forecasting, Non-linear Time Series in
Financial Forecasting, Sensitive Dependence
GARCH Modeling
Macroeconomics, Nonlinear Time Series in
Market Microstructure
Market Microstructure, Foreign Exchange
Microeconometrics
Nonparametric Tests for Independence
Stochastic Volatility
Treasury Market, Microstructure of the U.S.

Fractals and Multifractals, Section Editor: Daniel ben-Avraham and Shlomo Havlin

Anomalous Diffusion on Fractal Networks
Dynamics on Fractals
Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks
Fractal and Multifractal Time Series
Fractal and Transfractal Scale-Free Networks
Fractal Geometry, A Brief Introduction to
Fractal Growth Processes
Fractal Structures in Condensed Matter Physics
Fractals and Economics
Fractals and Multifractals, Introduction to
Fractals and Percolation
Fractals and Wavelets: What can we Learn on Transcription and Replication from Wavelet-Based Multifractal Analysis of DNA Sequences?
Fractals in Biology
Fractals in Geology and Geophysics
Fractals in the Quantum Theory of Spacetime
Fractals Meet Chaos
Phase Transitions on Fractals and Networks
Reaction Kinetics in Fractals

Game Theory, Section Editor: Marilda Sotomayor

Bayesian Games: Games with Incomplete Information
Cooperative Games
Cooperative Games (Von Neumann–Morgenstern Stable Sets)
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlated Equilibria and Communication in Games</td>
</tr>
<tr>
<td>Cost Sharing</td>
</tr>
<tr>
<td>Differential Games</td>
</tr>
<tr>
<td>Dynamic Games with an Application to Climate Change Models</td>
</tr>
<tr>
<td>Evolutionary Game Theory</td>
</tr>
<tr>
<td>Fair Division</td>
</tr>
<tr>
<td>Game Theory and Strategic Complexity</td>
</tr>
<tr>
<td>Game Theory, Introduction to</td>
</tr>
<tr>
<td>Implementation Theory</td>
</tr>
<tr>
<td>Inspection Games</td>
</tr>
<tr>
<td>Learning in Games</td>
</tr>
<tr>
<td>Market Games and Clubs</td>
</tr>
<tr>
<td>Mechanism Design</td>
</tr>
<tr>
<td>Networks and Stability</td>
</tr>
<tr>
<td>Principal-Agent Models</td>
</tr>
<tr>
<td>Repeated Games with Complete Information</td>
</tr>
<tr>
<td>Repeated Games with Incomplete Information</td>
</tr>
<tr>
<td>Reputation Effects</td>
</tr>
<tr>
<td>Signaling Games</td>
</tr>
<tr>
<td>Static Games</td>
</tr>
<tr>
<td>Stochastic Games</td>
</tr>
<tr>
<td>Two-Sided Matching Models</td>
</tr>
<tr>
<td>Voting</td>
</tr>
<tr>
<td>Voting Procedures, Complexity of</td>
</tr>
<tr>
<td>Zero-sum Two Person Games</td>
</tr>
</tbody>
</table>

Granular Computing, Section Editor: Tsau Y. Lin

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Multi-Hierarchical Query Answering Systems</td>
</tr>
<tr>
<td>Dependency and Granularity in Data Mining</td>
</tr>
<tr>
<td>Fuzzy Logic</td>
</tr>
<tr>
<td>Fuzzy Probability Theory</td>
</tr>
<tr>
<td>Fuzzy System Models Evolution from Fuzzy Rulebases to Fuzzy Functions</td>
</tr>
<tr>
<td>Genetic-Fuzzy Data Mining Techniques</td>
</tr>
<tr>
<td>Granular Model for Data Mining</td>
</tr>
<tr>
<td>Granular Computing and Data Mining for Ordered Data: The Dominance-Based Rough Set Approach</td>
</tr>
<tr>
<td>Granular Computing and Modeling of the Uncertainty in Quantum Mechanics</td>
</tr>
<tr>
<td>Granular Computing System Vulnerabilities: Exploring the Dark Side of Social Networking Communities</td>
</tr>
<tr>
<td>Granular Computing, Information Models for</td>
</tr>
<tr>
<td>Granular Computing, Introduction to</td>
</tr>
<tr>
<td>Granular Computing, Philosophical Foundation for</td>
</tr>
<tr>
<td>Granular Computing, Principles and Perspectives of</td>
</tr>
<tr>
<td>Granular Computing: Practices, Theories and Future Directions</td>
</tr>
<tr>
<td>Granular Neural Network</td>
</tr>
<tr>
<td>Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems</td>
</tr>
<tr>
<td>Multi-Granular Computing and Quotient Structure</td>
</tr>
<tr>
<td>Non-standard Analysis, An Invitation to</td>
</tr>
<tr>
<td>Rough and Rough-Fuzzy Sets in Design of Information Systems</td>
</tr>
<tr>
<td>Rough Set Data Analysis</td>
</tr>
<tr>
<td>Rule Induction, Missing Attribute Values and Discretization</td>
</tr>
<tr>
<td>Social Networks and Granular Computing</td>
</tr>
</tbody>
</table>
Intelligent Systems, Section Editor: James A. Hendler
Artificial Intelligence in Modeling and Simulation
Intelligent Control
Intelligent Systems, Introduction to
Learning and Planning (Intelligent Systems)
Mobile Agents
Semantic Web

Non-Linear Ordinary Differential Equations and Dynamical Systems, Section Editor: Ferdinand Verhulst
Center Manifolds
Dynamics of Hamiltonian Systems
Dynamics of Parametric Excitation
Existence and Uniqueness of Solutions of Initial Value Problems
Hyperbolic Dynamical Systems
Lyapunov–Schmidt Method for Dynamical Systems
Non-linear Ordinary Differential Equations and Dynamical Systems, Introduction to
Numerical Bifurcation Analysis
Periodic Orbits of Hamiltonian Systems
Periodic Solutions of Non-autonomous Ordinary Differential Equations
Relaxation Oscillations
Stability Theory of Ordinary Differential Equations

Non-Linear Partial Differential Equations, Section Editor: Italo Capuzzo Dolcetta
Biological Fluid Dynamics, Non-linear Partial Differential Equations
Control of Nonlinear Partial Differential Equations
Dispersion Phenomena in Partial Differential Equations
Hamilton-Jacobi Equations and weak KAM Theory
Hyperbolic Conservation Laws
Navier-Stokes Equations: A Mathematical Analysis
Non-linear Partial Differential Equations, Introduction to
Non-linear Partial Differential Equations, Viscosity Solution Method in
Non-linear Stochastic Partial Differential Equations
Scaling Limits of Large Systems of Nonlinear Partial Differential Equations
Vehicular Traffic: A Review of Continuum Mathematical Models

Percolation, Section Editor: Muhammad Sahimi
Bootstrap Percolation
Conduction and Diffusion in Percolating Systems
Continuum Percolation
Correlated Percolation
Elastic Percolation Networks
Invasion Percolation
Networks, Flexibility and Mobility in
Percolation and Polymer Morphology and Rheology
Percolation in Complex Networks
Percolation in Porous Media
Percolation Lattices, Efficient Simulation of Large
Percolation Phase Transition
Percolation Thresholds, Exact
Percolation, and Faults and Fractures in Rock
Percolation, Introduction to
Scaling Properties, Fractals, and the Renormalization Group Approach to Percolation

Perturbation Theory, Section Editor: Giuseppe Gaeta
- Diagrammatic Methods in Classical Perturbation Theory
- Hamiltonian Perturbation Theory (and Transition to Chaos)
- Kolmogorov-Arnold-Moser (KAM) Theory
- N-body Problem and Choreographies
- Nekhoroshev Theory
- Non-linear Dynamics, Symmetry and Perturbation Theory in Normal Forms in Perturbation Theory
- Perturbation Analysis of Parametric Resonance
- Perturbation of Equilibria in the Mathematical Theory of Evolution
- Perturbation of Systems with Nilpotent Real Part
- Perturbation Theory
- Perturbation Theory and Molecular Dynamics
- Perturbation Theory for Non-smooth Systems
- Perturbation Theory for PDEs
- Perturbation Theory in Celestial Mechanics
- Perturbation Theory in Quantum Mechanics
- Perturbation Theory, Introduction to
- Perturbation Theory, Semiclassical
- Perturbative Expansions, Convergence of Quantum Bifurcations

Probability and Statistics in Complex Systems, Section Editor: Henrik Jeldtoft Jensen
- Bayesian Statistics
- Branching Processes
- Complexity in Systems Level Biology and Genetics: Statistical Perspectives
- Correlations in Complex Systems
- Entropy
- Extreme Value Statistics
- Field Theoretic Methods
- Fluctuations, Importance of: Complexity in the View of Stochastic Processes
- Hierarchical Dynamics
- Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion
- Probability and Statistics in Complex Systems, Introduction to
- Probability Densities in Complex Systems, Measuring
- Probability Distributions in Complex Systems
- Random Matrix Theory
- Random Walks in Random Environment
- Record Statistics and Dynamics
- Stochastic Loewner Evolution: Linking Universality, Criticality and Conformal Invariance in Complex Systems
- Stochastic Processes

Quantum Information Science, Section Editor: Joseph F. Traub
- Quantum Algorithms
- Quantum Algorithms and Complexity for Continuous Problems
- Quantum Computational Complexity
- Quantum Computing Using Optics
Topical Table of Contents

Quantum Computing with Trapped Ions
Quantum Cryptography
Quantum Error Correction and Fault Tolerant Quantum Computing
Quantum Information Processing
Quantum Information Science, Introduction to

Social Network Analysis, Section Editor: John Scott
Network Analysis, Longitudinal Methods of
Positional Analysis and Blockmodelling
Social Network Analysis, Estimation and Sampling in
Social Network Analysis, Graph Theoretical Approaches to
Social Network Analysis, Large-Scale
Social Network Analysis, Overview of
Social Network Analysis, Two-Mode Concepts in
Social Network Visualization, Methods of
Social Networks, Algebraic Models for
Social Networks, Diffusion Processes in
Social Networks, Exponential Random Graph (p*) Models for

Social Science, Physics and Mathematics Applications in, Section Editor: Andrzej Nowak
Agent Based Modeling and Neoclassical Economics: A Critical Perspective
Agent Based Models in Economics and Complexity
Applications of Physics and Mathematics to Social Science, Introduction to
Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies
Consciousness and Complexity
Development, Complex Dynamic Systems of
Development, Evolution, and the Emergence of Novel Behavior
Dynamics and Evaluation: The Warm Glow of Processing Fluency
Dynamics of Language
Evolution of Culture, Memetics
Extreme Events in Socio-economic and Political Complex Systems, Predictability of
Human Behavior, Dynamics of
Intermittency and Localization
Investment Decision Making in Finance, Models of
Marketing: Complexity Modeling, Theory and Applications in
Minority Games
Moral Dynamics
Opinions Dynamics and Sociophysics
Physics and Mathematics Applications in Social Science
Rational, Goal-Oriented Agents
Social Cognitive Complexity
Social Coordination, from the Perspective of Coordination Dynamics
Social Organizations with Complexity Theory: A Dramatically Different Lens for the Knowledge Economy
Social Processes, Physical Models of
Social Processes, Simulation Models of
Social Psychology, Applications of Complexity to
Traffic and Crowd Dynamics: The Physics of the City

Soft Computing, Section Editor: Janusz Kacprzyk
Aggregation Operators and Soft Computing
Evolving Fuzzy Systems
Fuzzy Logic, Type-2 and Uncertainty
Fuzzy Optimization
Fuzzy Sets Theory, Foundations of
Hybrid Soft Computing Models for Systems Modeling and Control
Neuro-fuzzy Systems
Possibility Theory
Rough Sets in Decision Making
Rough Sets: Foundations and Perspectives
Soft Computing, Introduction to
Statistics with Imprecise Data

Solitons, Section Editor: Mohamed A. Helal

Adomian Decomposition Method Applied to Non-linear Evolution Equations in Soliton Theory
Inverse Scattering Transform and the Theory of Solitons
Korteweg–de Vries Equation (KdV), Different Analytical Methods for Solving the
Korteweg–de Vries Equation (KdV) and Modified Korteweg–de Vries Equations (mKdV),
Semi-analytical Methods for Solving the
Korteweg–de Vries Equation (KdV), Some Numerical Methods for Solving the
Korteweg–de Vries Equation (KdV) History, Exact N-Soliton Solutions and Further Properties
Non-linear Internal Waves
Partial Differential Equations that Lead to Solitons
Shallow Water Waves and Solitary Waves
Soliton Perturbation
Solitons and Compactons
Solitons Interactions
Solitons, Introduction to
Solitons, Tsunamis and Oceanographical Applications of
Solitons: Historical and Physical Introduction
Water Waves and the Korteweg–de Vries Equation

Statistical and Nonlinear Physics, Section Editor: M. Cristina Marchetti

Anisotropic Networks, Elastomers and Gels
Cell Biology: Networks, Regulation and Pathways
Chaotic Dynamics in Nonequilibrium Statistical Mechanics
Collective Transport and Depinning
Complex Systems and Emergent Phenomena
Cytoskeleton and Cell Motility
Disordered Elastic Media
Econophysics, Statistical Mechanics Approach to
Fluctuation Theorems, Brownian Motors and Thermodynamics of Small Systems
Glasses and Aging, A Statistical Mechanics Perspective on
Granular Flows
Jamming of Granular Matter
Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of Microfluidics
Monte Carlo Simulations in Statistical Physics
Networks: Structure and Dynamics
Neuronal Dynamics
Noise and Stability in Modelocked Soliton Lasers
Non-linear Fluid Flow, Pattern Formation, Mixing and Turbulence
Optimization Problems and Algorithms from Computer Science
Polymer Physics
Protein Mechanics at the Single-Molecule Level
Quantum Chaos
Statistical and Non-linear Physics, Introduction to
Ultracold Atomic Gases: Novel States of Matter

Synergetics, Section Editor: Hermann Haken

Brain Pacemaker
Fluid Dynamics, Pattern Formation
Fluid Dynamics, Turbulence
Intentionality: A Naturalization Proposal on the Basis of Complex Dynamical Systems
Linear and Non-linear Fokker–Planck Equations
Movement Coordination
Patterns and Interfaces in Dissipative Dynamics
Self-Organization and Clinical Psychology
Self-Organization and the City
Synergetics, Introduction to
Synergetics: Basic Concepts

System Dynamics, Section Editor: Brian Dangerfield

Business Policy and Strategy, System Dynamics Applications to
Delay and Disruption in Complex Projects
Diffusion of Innovations, System Dynamics Analysis of the
Dynamics of Income Distribution in a Market Economy: Possibilities for Poverty Alleviation
Group Model Building
Health Care in the United Kingdom and Europe, System Dynamics Applications to
Health Care in the United States, System Dynamics Applications to
Public Policy, System Dynamics Applications to
Scenario-Driven Planning with System Dynamics
System Dynamics and Its Contribution to Economics and Economic Modeling
System Dynamics and Organizational Learning
System Dynamics in the Evolution of the Systems Approach
System Dynamics Modeling: Validation for Quality Assurance
System Dynamics Models of Environment, Energy and Climate Change
System Dynamics Models, Optimization of
System Dynamics Philosophical Background and Underpinnings
System Dynamics, Analytical Methods for Structural Dominance Analysis in
System Dynamics, Introduction to
System Dynamics, The Basic Elements of

Systems and Control Theory, Section Editor: Matthias Kawski

Chronological Calculus in Systems and Control Theory
Discrete Control Systems
Finite Dimensional Controllability
Hybrid Control Systems
Learning, System Identification, and Complexity
Maximum Principle in Optimal Control
Mechanical Systems: Symmetries and Reduction
Nonsmooth Analysis in Systems and Control Theory
Observability (Deterministic Systems) and Realization Theory
Robotic Networks, Distributed Algorithms for Stability and Feedback Stabilization
Stochastic Noises, Observation, Identification and Realization with System Regulation and Design, Geometric and Algebraic Methods in Systems and Control, Introduction to

Systems Biology, Section Editor: Timothy P. Galitski

Biological Data Integration and Model Building
Biological Models of Molecular Network Dynamics
Biomolecular Network Structure and Function
Boolean Modeling of Biological Networks
Ecological Systems
Functional Genomics for Characterization of Genome Sequences
Genome Organization
Metabolic Systems Biology
Stochastic Models of Biological Processes
Systems Biology of Human Immunity and Disease
Systems Biology, Introduction to
Systems Genetics and Complex Traits

Traffic Management, Complex Dynamics of, Section Editor: Boris Kerner

Air Traffic Control, Complex Dynamics of
Complex Dynamics of Traffic Management, Introduction to
Evacuation as a Communication and Social Phenomenon
Evacuation Dynamics: Empirical Results, Modeling and Applications
Freeway Traffic Management and Control
Pedestrian, Crowd and Evacuation Dynamics
Traffic Breakdown, Probabilistic Theory of
Traffic Congestion, Modeling Approaches to
Traffic Congestion, Spatiotemporal Features of
Traffic Networks, Optimization and Control of Urban
Traffic Networks: Dynamic Traffic Routing, Assignment, and Assessment
Traffic Prediction of Congested Patterns
Travel Behaviour and Demand Analysis and Prediction

Unconventional Computing, Section Editor: Andrew Adamatzky

Amorphous Computing
Analog Computation
Artificial Chemistry
Bacterial Computing
Cellular Computing
Computing in Geometrical Constrained Excitable Chemical Systems
Computing with Solitons
DNA Computing
Evolution in Materio
Immunecomputing
Mechanical Computing: The Computational Complexity of Physical Devices
Membrane Computing
Molecular Automata
Nanocomputers
Optical Computing
Quantum Computing
Reaction-Diffusion Computing
Reversible Computing
Thermodynamics of Computation
Unconventional Computing, Introduction to
Unconventional Computing, Novel Hardware for

Wavelets, Section Editor: Edward Aboufadel
Bivariate (Two-dimensional) Wavelets
Comparison of Discrete and Continuous Wavelet Transforms
Curvelets and Ridgelets
Multivariate Splines and Their Applications
Multiwavelets
Numerical Issues When Using Wavelets
Popular Wavelet Families and Filters and Their Use
Statistical Applications of Wavelets
Wavelets and PDE Techniques in Image Processing, A Quick Tour of
Wavelets and the Lifting Scheme
Wavelets, Introduction to
Encyclopedia of Complexity and Systems Science
Editor-in-chief: Meyers, R.A.
2009, MCXX, 10398 p. In 14 volumes, not available separately., Hardcover