Contents

Section 1 Operational Developments in Chemistry

Chapter 1 The Use of Polymer-Assisted Solution-Phase Synthesis and Automation for the High-Throughput Preparation of Biologically Active Compounds
Steven V. Ley, Mark Ladlow and Emma Vickerstaffe

1 Introduction 3
2 PASP Synthesis Approaches to Biologically Active Compounds 7
 2.1 Applications to the Synthesis of Commercial Drug Molecules 7
 2.2 Applications of PASP to the Synthesis of Biologically Active Natural Products 10
 2.3 PASP Synthesis in the Library Production of Biologically Active Small Molecules 12
3 Automated PASP Synthesis of Biologically Active Molecules 19
 3.1 Stepwise Automation of PASP Synthesis in Batch Mode 19
 3.2 Fully Automated PASP Synthesis of Drug-Like Molecules in Batch Mode 21
 3.3 Flow Chemistry and Automation in the Synthesis of Drug-Like Molecules 23
4 Conclusion 28
References 28

Chapter 2 Accelerated Chemistry: Microwave, Sonochemical, and Fluorous Phase Techniques
Kristofer Olofsson, Peter Nilsson and Mats Larhed

1 Introduction 33
2 Microwave Enhanced Chemistry 34
 2.1 General 34
 2.2 Applications in Medicinal Chemistry 35
 2.3 Applications in Solid-Phase Chemistry 37
3 Sonochemistry as a Means to Accelerate Synthesis 37
 3.1 General 37
 3.2 Organometallic Sonochemistry 38
 3.3 Heterocyclic and Pericyclic Chemistry 38
 3.4 Applications in Medicinal Chemistry 39
4 Fluorous Phase Techniques 40
 4.1 General 40
 4.2 Reagents, Linkers, and Scavengers 42
 4.3 Fluorous Protecting Groups 44
 4.4 Fluorous Mixture Synthesis 44
 4.5 Peptides and Oligosaccharides 45
 4.6 Fluorous Applications in High-Throughput Chemistry 46
 4.7 Microwave-Enhanced Fluorous Chemistry 46
5 Conclusion 48
Acknowledgements 48
References 48

Section 2 Conceptual Advances in Synthesis: “Prospecting” – Design of Discovery Libraries and the Search for Hits

Chapter 3 Biosynthesis of “Unnatural” Natural Products 57
Yi Tang and Chaitan Khosla
1 Introduction 57
 1.1 Polyketide Assembly 58
 1.2 Three Major Classes of Polyketide Synthases 60
 1.3 Methods for Engineered Biosynthesis 60
2 Type I Polyketide Synthases 61
 2.1 Modular Architecture 61
 2.2 The Erythromycin Synthase 63
 2.3 Engineered Biosynthesis of Multimodular PKS Products 64
 2.3.1 Domain Engineering 64
 2.3.2 Module Engineering 66
 2.3.3 Primer Unit Engineering and Precursor-Directed Biosynthesis 68
 2.4 Multimodular PKSs that Exhibit Special Features 70
 2.5 Fungal Type I PKSs 70
Contents

3 Type II Polyketide Synthases 72
 3.1 Dissociated Architecture 72
 3.2 Combinatorial Biosynthesis of
 Type II Polyketides 75
 3.2.1 Chain-Length Variations 76
 3.2.2 Mix and Match of Tailoring Enzymes 76
 3.2.3 Primer Unit Modifications 78
 3.2.4 Reshuffling of Downstream
 Tailoring Enzymes 80
4 Type III Polyketide Synthase 81
 4.1 Type III PKS Consists of a Homodimeric
 Ketosynthase 81
 4.2 Engineered Biosynthesis of Type III Polyketides 84
5 Conclusions 85
Acknowledgments 86
References 86

Chapter 4 Combinatorial Synthetic Design:
The Balance of Novelty and Familiarity 91
A. Ganesan
 1 Biological Macromolecules – Strength in Numbers 91
 1.1 Congruence between Biological and
 Chemical Space 93
 1.2 The Libraries are Exhaustive within the
 Defined Boundaries 93
 1.3 Highly Optimized Synthesis Procedures
 were Available 94
 2 Oligomer Synthesis – Improving on Mother Nature 94
 3 Random, Discovery, or Prospecting Libraries –
 the Quest for the Universal Scaffold 96
 4 Privileged Scaffolds – Look Where the
 Light is Brightest 96
 5 The Decoration or Synthesis of Novel Scaffolds –
 Aid for the Underprivileged 97
 6 Target Class Libraries – Diversity with a Purpose 100
 7 Peptide and Nucleotide Libraries Redux 101
 8 Lead Discovery or Drug Discovery – Size
 does Matter 102
 9 Natural Product Scaffolds for Combinatorial
 Chemistry – Why Reinvent the Wheel? 103
 10 From Natural Products to Natural Product-Like
 Libraries – Hubris or Progress? 104
Chapter 5 **Compound Collections: Acquisition, Annotation, and Access** 112
Reg Richardson

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Commercial Offerings</td>
</tr>
<tr>
<td>3</td>
<td>Companies Providing Non-Proprietary, Non-Parallel Synthesised Libraries (Shared-Pool/‘Collected Collections’)</td>
</tr>
<tr>
<td>4</td>
<td>Companies Providing In-House Designed, Parallel Synthesised Libraries</td>
</tr>
<tr>
<td>5</td>
<td>Compound Selection and Database Filtering</td>
</tr>
<tr>
<td>6</td>
<td>Sub-structure Similarity/Dissimilarity</td>
</tr>
<tr>
<td>7</td>
<td>Pharmacophore Analysis</td>
</tr>
<tr>
<td>8</td>
<td>Annotation</td>
</tr>
<tr>
<td>9</td>
<td>Lipinski Rule-of-Five (LRoF)</td>
</tr>
<tr>
<td>10</td>
<td>Topological Polar Surface Area (tPSA) and Blood–Brain-Barrier Permeability (Log BB)</td>
</tr>
<tr>
<td>11</td>
<td>Solubility</td>
</tr>
<tr>
<td>12</td>
<td>Examples of the Use of Chemical Annotation and Pharmacophore-Based Lead-Hopping</td>
</tr>
<tr>
<td>13</td>
<td>Compound Acquisition</td>
</tr>
</tbody>
</table>

Acknowledgments 134
References 134

Chapter 6 **Chemical Diversity: Definition and Quantification** 137
Alan C. Gibbs and Dimitris K. Agrafiotis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

References 137
Chapter 8 Translating Peptides into Small Molecules 184
 Gerd Hummel, Ulrich Reineke and Ulf Reimer
 1 Peptides as Drugs: The Good, the Bad and the Ugly 184
 2 Origin of Biologically Active Peptides 185
 3 General Strategy for Translating Peptides into Small Molecules 186
 4 Tailoring Peptide Sequences for their Translation into Small Molecules 186
 5 Transformation of Peptide Ligands into Small Molecules using Computational Approaches 191
 6 Conclusion 198
 References 198

Section 4 Operational Developments in Screening and High Throughput Assays

Chapter 9 High-Density Plates, Microarrays, Microfluidics 203
 Christof Fattinger and Gregor Dernick
 1 Functional High-Density Well Plates for High-Throughput Assays 204
 1.1 Sample Plates for Low-Volume High-Throughput Screening 205
 1.2 High-Density Assay Plates for HTS and Multidimensional Compound Profiling 206
 1.3 Technical, Biological, and Economical Limits for Assay Miniaturization in High-Density Plates 208
 1.4 384-Microtube Plate for High-Throughput Retrieval of Compound Subsets 210
 1.5 Sample Management for HTS and Multidimensional Compound Profiling 211
Chapter 10 Fluorescence Technologies for the Investigation of Chemical Libraries 233
Eric Trinquet and Gérard Mathis

1 Introduction 233
2 Dissociation-Enhanced Lanthanide Fluoroimmunoassay 234
3 Enzyme Fragment Complementation 236
4 Fluorescence Polarization 236
5 Fluorescence Correlation Spectroscopy 238
6 Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen™) 238
7 Fluorescence Resonance Energy Transfer 239
8 Bioluminescence Resonance Energy Transfer 241
9 Homogeneous Time Resolved Fluorescence 241
10 Conclusion 244
References 245

Chapter 11 The Use of Genetically Engineered Cell-Based Assays in in-vitro Drug Discovery 247
Renate Schnitzer and Wolfgang Sommergruber

1 Introduction 247
2 Genetic Engineering for Cell-Based Assays 248
 2.1 Expression Systems 248
 2.2 Choice of Cell Line and Promoter 249
 2.3 Chromosomal Integration Site 250
3 Reporter-Based Assays 250
 3.1 Chloramphenicol Acetyl Transferase, Secreted Placental Alkaline Phosphatase, β-Galactosidase 251
<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>NMR-Based Screening: A Powerful Tool in Fragment-Based Drug Discovery</th>
<th>263</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>263</td>
</tr>
<tr>
<td>2</td>
<td>NMR Screening: General Aspects</td>
<td>266</td>
</tr>
<tr>
<td>3</td>
<td>Ligand- vs. Target-Detected Methods</td>
<td>268</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample Requirements</td>
<td>268</td>
</tr>
<tr>
<td>4</td>
<td>Incorporation of NMR into the Drug Discovery Process</td>
<td>269</td>
</tr>
<tr>
<td>4.1</td>
<td>Hit Finding</td>
<td>270</td>
</tr>
<tr>
<td>4.1.1</td>
<td>STD and WaterLOGSY</td>
<td>270</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Libraries of 19F-Containing Ligands</td>
<td>272</td>
</tr>
<tr>
<td>4.2</td>
<td>Hit Validation</td>
<td>273</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Chemical Shift Mapping</td>
<td>273</td>
</tr>
<tr>
<td>4.3</td>
<td>Hit Optimization</td>
<td>274</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Chemical Shift Mapping</td>
<td>274</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Competition-Based Screening</td>
<td>275</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Paramagnetic Spin Labels</td>
<td>276</td>
</tr>
<tr>
<td>5</td>
<td>Representative Case Studies</td>
<td>277</td>
</tr>
<tr>
<td>5.1</td>
<td>Fluorine Screening</td>
<td>277</td>
</tr>
<tr>
<td>5.2</td>
<td>SAR-by-NMR</td>
<td>282</td>
</tr>
<tr>
<td>5.3</td>
<td>Saturation Transfer Double Difference</td>
<td>285</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>287</td>
</tr>
<tr>
<td>References</td>
<td>288</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 13 Screening Chemical Microarrays: Methods and Applications 291

Pappanaicken R. Kumaresan and Kit S. Lam

1 | Introduction | 291 |
| 1.1 | In situ Synthesis of Peptide and Non-Peptide Microarrays | 293 |
Contents

1.2 Spotting of Pre-Synthesized Small Molecules and Peptides 293
1.3 Carbohydrate Microarrays 293
1.4 One-Bead-One-Compound Combinatorial Library Bead-Arrays 294

2 Screening of Chemical Microarrays 295
2.1 Labeling Methods 296
2.1.1 Fluorescence Method 296
2.1.2 Chemiluminescence Method 297
2.1.3 Radiolabeling Methods 297
2.1.4 Colorimetric Methods 297
2.2 Label-Free Optical and Mass Spectrometry Methods 298
2.2.1 Surface Plasmon Resonance 298
2.2.2 Oblique-Incidence Optical Reflectivity Difference Microscopy 298
2.2.3 Surface-Enhanced Laser Desorption/Ionization Mass Spectrometry 298
2.2.4 Atomic Force Microscopy 299
2.2.5 Fiber-Optic Bead Methods 299
2.2.6 Laser-Detection Methods 299
2.2.7 Electrochemical Biosensor Method 299
2.2.8 Cell-Based Assays 300

3 Applications of Chemical Microarrays 300
3.1 Basic Science Applications 301
3.1.1 Protein-Binding Arrays 301
3.1.2 Carbohydrate Microarrays for Cell Receptors 302
3.1.3 Cell-Signaling Arrays 302
3.1.4 Enzyme Substrate/Inhibitor Arrays 303
3.1.5 Chemical-Detection Arrays 303
3.2 Medical Applications 304
3.2.1 Diagnostic Arrays 304
3.2.2 Immunological Arrays 304
3.2.3 Cell-Binding Arrays 305
3.2.4 Drug-Discovery Arrays 305

4 Conclusion 306
Acknowledgments 306
References 307
Section 5 Conceptual Advances in Lead Evaluation:
Screen Early and Often

Chapter 14 Screen/Counter-Screen: Early Assessment of Selectivity 315
Martyn N. Banks, Litao Zhang and John G. Houston

1 Introduction 315
2 Approaches Used for Selection of Drug Candidates 317
 2.1 Lead Evaluation and Liability Profiling 317
 2.1.1 ADME Liability Profiling 318
 2.1.2 The Lead Evaluation Process: Technologies and Methods 319
 2.2 Specificity of Drug Candidates and the Construction of In Vitro Specificity Panels 323
 2.2.1 Receptors 323
 2.2.2 Protein Kinases 328
 2.2.3 Ion Channels 331
3 Summary 332
References 332

Chapter 15 Concepts for In Vitro Profiling: Drug Activity, Selectivity and Liability 336
Michael B. Bolger, Robert Fraczkiewicz, Michael Entzeroth and Boyd Steere

1 Introduction 336
2 Physicochemical Parameters 339
 2.1 Partition Coefficient 339
 2.2 pKa 340
 2.3 Solubility 343
 2.3.1 Thermodynamic Solubility 343
 2.3.2 To Buffer or not to Buffer 345
3 Permeability 348
4 Metabolism 350
5 Protein Binding 353
6 Toxicity 354
 6.1 Cell Viability: MTS Assay for In Vitro Cytotoxicity 355
 6.2 Membrane Damage: Release of LDH (Lactate Dehydrogenase) 355
 6.3 Induction of Apoptosis: Caspase Activity 355
 6.4 HERG Potassium Channel Interaction 355
4 Examples Show the Power of HCS

4.1 Example 1: NF-kB Nuclear Translocation Assay (from Prelux) 390

4.2 Example 2: Characterization of Apoptosis Pathways Using High-Throughput Image-Based Assays (from Prelux) 394

4.3 Example 3: Gap Junction Inhibitors (from sanofi-aventis) 400

5 Summary 402
References 404

Subject Index 405
Exploiting Chemical Diversity for Drug Discovery
Bartlett, P.A.; Entzeroth, M. (Eds.)
2006, 345 p., Hardcover
ISBN: 978-0-85404-842-7
A product of Royal Society of Chemistry