Edward J. Specht (1915–2011)
Harold T. Jones (1925–1995)
Keith G. Calkins
Donald H. Rhoads

Supplement to Euclidean
Geometry and its Subgeometries

February 2016
Preface

This Supplement is a companion to the book by Edward J. Specht, Harold T. Jones, Keith G. Calkins, and Donald H. Rhoads entitled *Euclidean Geometry and its Subgeometries* published in 2015 by Birkhäuser. We shall refer to this work as *Specht*.

Chapter 1 of this Supplement is an expansion of *Specht* Ch.18 (Section 18.2) in *Specht*. It duplicates some of the material found there, as well as parts of *Specht* Ch.1, Section 1.5. Chapter 2 defines and develops complex numbers on the coordinate plane.

Chapter 3 develops the notion of the length of an arc; Chapter 4 uses arc length to define the circular functions sin and cos in a treatment originated by our first author, Edward Specht. Chapter 5 builds on the previous two chapters to define angle measure.

Chapter 6 is a leisurely exploration of properties of polygons on a Pasch plane, eventuating in a proof of the Jordan Curve Theorem for the polygonal case. It does not try to achieve this proof in the most economical way.

The final chapters are essentially fragments which were left over from the main development, but which might have some interest for their own sakes.

Chapter 7 is a proof of “Property PE,” which says that given a line L on a Pasch plane and a point Q not on L, there exists a line M containing Q that is parallel to L. This was proved in Chapter 8 of *Specht* as part of neutral geometry. Here we prove it for a Pasch plane (without assuming the existence of a reflection set) on which the line L has been ordered according to *Specht* Ch.6 and Axiom LUB holds.

Chapter 8 shows that in *Specht* Ch.8 Definition NEUT.2, property R.6 (existence of midpoints) is a consequence of properties R.1 through R.5, provided Axiom PW holds.
Citations and references. In this Supplement, we will often refer to theorems, definitions, and remarks, both from this Supplement, and from *Specht*. Our preferred (brief) style of reference will be simply by label, acronym, and number, as, for instance, “Theorem ISM.5” or “Definition VEC.12.” When first referencing items of a particular acronym from *Specht*, we will include additional labeling, as, for instance, “*Specht* Ch.12 Theorem ISM.5.” Repeated uses of the same acronym will usually revert to the shorter style.

Condensed Table of Contents for Specht, *Euclidean Geometry and its Subgeometries*

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Preliminaries and Incidence Geometry</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>2</td>
<td>Affine Geometry: Incidence with Parallelism</td>
<td>37</td>
</tr>
<tr>
<td>CAP</td>
<td>3</td>
<td>Colineations of an Affine Plane</td>
<td>45</td>
</tr>
<tr>
<td>IB</td>
<td>4</td>
<td>Incidence and Betweenness</td>
<td>63</td>
</tr>
<tr>
<td>PSH</td>
<td>5</td>
<td>Pasch Geometry</td>
<td>79</td>
</tr>
<tr>
<td>ORD</td>
<td>6</td>
<td>Ordering a line in a Pasch Plane</td>
<td>139</td>
</tr>
<tr>
<td>COBE</td>
<td>7</td>
<td>Collineations preserving Betweenness</td>
<td>149</td>
</tr>
<tr>
<td>NEUT</td>
<td>8</td>
<td>Neutral Geometry</td>
<td>155</td>
</tr>
<tr>
<td>FSEG</td>
<td>9</td>
<td>Free Segments of a Neutral Plane</td>
<td>225</td>
</tr>
<tr>
<td>ROT</td>
<td>10</td>
<td>Rotations about a Point of a Neutral Plane</td>
<td>235</td>
</tr>
<tr>
<td>EUC</td>
<td>11</td>
<td>Euclidean Geometry Basics</td>
<td>251</td>
</tr>
<tr>
<td>ISM</td>
<td>12</td>
<td>Isometries of a Euclidean Plane</td>
<td>265</td>
</tr>
<tr>
<td>DLN</td>
<td>13</td>
<td>Dilations of a Euclidean Plane</td>
<td>281</td>
</tr>
<tr>
<td>OF</td>
<td>14</td>
<td>Every Line in a Euclidean Plane is an Ordered Field</td>
<td>305</td>
</tr>
<tr>
<td>SIM</td>
<td>15</td>
<td>Similarity on a Euclidean Plane</td>
<td>319</td>
</tr>
<tr>
<td>AX</td>
<td>16</td>
<td>Axial Affinities of a Euclidean Plane</td>
<td>335</td>
</tr>
<tr>
<td>QX</td>
<td>17</td>
<td>Rational Points on a Line</td>
<td>347</td>
</tr>
<tr>
<td>REAL</td>
<td>18</td>
<td>A Line as Real Numbers</td>
<td>361</td>
</tr>
<tr>
<td>RR</td>
<td>18</td>
<td>Coordinatization of a Plane</td>
<td>385</td>
</tr>
<tr>
<td>AA</td>
<td>19</td>
<td>Belineations on a Euclidean/LUB Plane</td>
<td>391</td>
</tr>
<tr>
<td>RS</td>
<td>20</td>
<td>Ratios of Sensed Segments</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Consistency and Independence of Axioms, etc</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Acronyms: LA, LB, LC, FM, DZI, MLT, PSM, LE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Acronyms: BI, MMI, RSI, DZII, DZIII</td>
<td></td>
</tr>
</tbody>
</table>

References to acronyms other than those listed above will be to items in this Supplement.
Contents

1 The Plane as a Vector Space (VEC) .. 1
 1.1 Operations on the plane ... 2
 1.2 Vector spaces, \mathbb{R}^2 and isomorphisms 4
 1.3 Lines and their slopes ... 11
 1.4 Norms and inner products 16
 1.5 Linear mappings ... 20
 1.6 Affine mappings and belineations 25
 1.7 Exercises for vector spaces 30
 1.8 Selected answers for vector spaces 32

2 The Field of Complex Numbers (CX) 41
 2.1 Definitions and theorems for complex numbers 42
 2.2 Computation with complex numbers 48
 2.3 Exercises for complex numbers 52
 2.4 Selected answers for complex numbers 52

3 Arc Length (ARC) .. 55
 3.1 Definitions and theorems for arc length 56
 3.2 Exercises for arc length 67
 3.3 Selected answers for arc length 68

4 The Real Functions Cosine and Sine (CS) 71
 4.1 Basic properties of cosine and sine; periodicity 72
 4.2 Cosine, sine, and the unit circle 78
 4.3 Sides of a line intersecting a circle 82
 4.4 Isometry preserves arc length; $k = \frac{\pi}{2}$; summary 86
List of Figures

1.1 Figures for Definition VEC.9: left-handed (left) and right-handed (right). 6

3.1 Showing construction of the summation of f over the partition $\mathcal{P} = \{a = t_0 < t_1 < ... < t_6 = b\}$.. 57

4.1 Graphs of $f(x) = \frac{2}{1+x^2}$ (top) and $g(x) = \int_0^x f(t) \, dt$ (bottom) for Definition CS.1. 72

4.2 The graphs of $q(x) = g^{-1}(x)$, $\sin x$, and $\cos x$ for Definition CS.3 and Heuristic Remark CS.4. 74

4.3 A line divides a circle into two arcs. 84

4.4 Graphs of $\sin x$ and $\cos x$ for reference. 88

4.5 The case where α is a point reflection. 90

4.6 Illustrating Case I. ... 91

4.7 For Theorem CS.28 and Remark CS.28.1, showing action of rotation ρ. .. 92

4.8 Showing mapping of $\text{cis}[0, t - s]$ to \mathcal{E}. 92

5.1 For Theorem AM.13. ... 110

6.1 Showing possibilities for intersection of a ray and a segment. .. 116

6.2 For Lemma PLGN.11. .. 124

6.3 For Theorem PLGN.13. .. 126

6.4 For Theorem PLGN.17 Alternative (3). 128

6.5 For Theorem SEP.4 (A) Case II. 132
6.6 For Theorem SEP.4(B) Case II. 132
6.7 For Theorem SEP.7. ... 135
6.8 For Remark SEP.9. ... 137
6.9 For proof that alternate (4) is impossible. 139
6.10 For Theorem SEP.14, alternatives (1), (2), and (3). 139
6.11 For Theorem SEP.14, alternative (1) parts (b) and (c) 140
6.12 For Theorem SEP.15. .. 142
6.13 For the construction for part (1)(b) of Theorem SEP.15. 143
6.14 For Theorem CNV.3(A). ... 146
6.15 For Theorem CNV.5(B). ... 149
6.16 For one case of Lemma CNV.6(A) (see also Theorem PSH.53). 151
6.17 For Lemma CNV.6(E) alternative (i). 154
6.18 For proof of Lemma CNV.6(G). 154
6.19 For proof of Lemma CNV.6(H). 155
6.20 For proof of Lemma CNV.6(I), cases (i)–(iii). 156
6.21 For Lemma CNV.6(I), hypothesis (1), case (iv). 157
6.22 For Lemma CNV.6(I), hypotheses (2)–(4), case (iv). 158
6.23 For proof of Theorem CNV.7(A). 159
6.24 For Theorem CNV.7, contradicting the convexity of enc F. 160
6.25 For proof of Theorem CNV.8(B) alternative (3). 161
6.26 For Theorem CNV.13(A), (B); the dotted lines are the lines of D which are not edges of F. 164
6.27 For proof of Theorem CNV.17(1). 165
6.28 For Remark CNV.26. .. 172
6.29 For Theorem CNV.29, where $X_i = X_3$ and $X_j = X_5$. ... 174
6.30 For proof of Theorem CNV.29 Case (I). 174
6.31 For proof of Theorem CNV.29 Case (II) Claim (a). 175
6.32 For proof of Theorem CNV.29 Case (II) Claim (b). 176
6.33 Showing $ins \mathcal{H} \not\subseteq ins \mathcal{G}$. 177

7.1 For Claim 2 in Theorem LUPE. 191
7.2 For Claim 3 in Theorem LUPE. 191
7.3 For Claim 4 in Theorem LUPE. 192
7.4 For Claim 7 in Theorem LUPE. 193

8.1 For Lemma NEUTM.4. ... 197
8.2 For Theorem NEUTM.6. 199
Chapter 1
The Plane as a Vector Space (VEC)

Dependencies: This chapter is dependent on Euclidean Geometry and its Subgeometries, by Specht, Jones, Calkins, and Rhoads, published by Birkhäuser, 2015

Acronym: VEC

Terms defined: addition, scalar product on the plane; coordinatization (right or left-handed), axes, origin, clockwise and counterclockwise; first and second coordinates on a plane; vector or linear space, vector space isomorphism, coordinatization map; linearly independent, span, basis, dimension; ordered triples, n-tuples; vertical, horizontal, slope, norm, inner (dot) product, orthogonal; linear mapping, sum and scalar product of linear mappings, matrix, determinant; affine mapping

The first part of this chapter is an expansion of Chapter 18 of Euclidean Geometry and its Subgeometries by Specht, Jones, Calkins, and Rhoads, hereafter referred to as Specht. This duplicates some of the material found in Specht Chapter 18, as well as parts of Chapter 1, Section 1.5. Later in the present chapter we provide some results on linear and affine mappings which are relevant to the main development in Specht.

In Section 18.3 of Specht Ch.18 we assigned a real number to each point on an arbitrary line in a Euclidean/LUB plane. This process might be characterized as coordinatizing the line. In Section 18.4 of the same chapter we briefly outlined the process by which the Euclidean/LUB plane itself may be coordinatized, assigning to each point on it a pair \((a, b)\) of numbers.\(^1\) Here we develop this process in greater detail.

\(^1\) It is possible to coordinatize Euclidean space, assigning to each point a triple \((a, b, c)\) of real numbers, but we do not pursue this.
Here, references to items labeled VEC will be to the current chapter; all other references are to Specht. In particular, this chapter contains numerous references to Chapter 18 of that work, which uses acronyms REAL and RR.

We refer the reader to the note Citations and references at the end of the Preface to this Supplement and to the abbreviated Table of Contents (with acronyms) for Specht.

1.1 Operations on the plane

Throughout this chapter, \(\mathbb{P} \) will denote a Euclidean/LUB plane as defined in Specht Ch.18 Definition REAL.2.

Definition VEC.1 (A) For each \(A \in \mathbb{P} \setminus \{O\} \), define \(\tau_A \) to be the translation of \(\mathbb{P} \) such that \(\tau_A(O) = A \). Specht Ch.12 Theorem ISM.5 says that such a translation exists and is unique.

(B) Define \(\tau_O = i \), the identity.

(C) For any \(A \) and \(B \) in \(\mathbb{P} \), define

\[
A + B = (\tau_B \circ \tau_A)(O) = \tau_B(\tau_A(O)) = \tau_B(A).
\]

The operation \(+ \) is called addition and \(A + B \) is the sum of \(A \) and \(B \).

Remark VEC.2 (A) The operation \(+ \) from Definition VEC.1 applied to points on a line \(L \) through \(O \) is identical to the operation \(\oplus \) from Specht Ch.14 Definition OF.1(A) and (C).

(B) Since we have made the identification of a line on the plane with the real numbers, we abandon the use of the symbol \(\oplus \) and henceforth will use simply \(+ \). However, in cases where we wish to emphasize that we are adding two points in a single line through \(O \), we may revert temporarily back to \(\oplus \).

Also, if we should have occasion to multiply points on such a line we may continue to use \(\odot \)—at this point there is no definition of the product of arbitrary points on the plane.

Theorem VEC.3 The Euclidean/LUB plane \(\mathbb{P} \) is an Abelian group under the operation \(+ \).

Proof. Let \(T = \{ \alpha \mid \alpha \text{ is a translation of } \mathbb{P} \text{ or } \alpha = i \} \), then by Theorem ISM.8(A) \(T \) is an Abelian group under composition of mappings. Routine calculations based on Definition VEC.1 confirm that \(\mathbb{P} \) is an Abelian group.
1.1 Operations on the plane

under the operation +; we leave these to the reader as Exercise VEC.1. □

Theorem VEC.4 If O, A, and B are noncollinear, then $A + B$ is the fourth corner of the parallelogram whose other corners are O, A, and B.

Proof. This is an immediate consequence of Exercise ISM.2. □

Remark VEC.5 (A) Note that τ_A is the translation that not only maps O to A but also maps B to $A + B$. Also, $\tau_{A-B}(B) = (A - B) + B = A$ so τ_{A-B} maps B to A.

(B) If A and B are any two points then $\tau_{-B}(B) = O$ and $\tau_{-B}(A) = A - B$. By Specht Ch.8 Theorem NEUT.15 (since τ_{-B} is an isometry) $\tau_{-B}(AB) = (A - B)O$ and hence $\overrightarrow{AB} \cong \overrightarrow{O(A - B)}$.

(C) The line $L = \overrightarrow{OA}$ can be built into an ordered field using the machinery of Specht Chapter 14; by Theorem OF.10(A)(1) of that chapter, for each $A \in P$, $-A = R_O(A)$. Hence for any A, $R_O(\overrightarrow{OA}) = \overrightarrow{OR_O(A)} = O(-A)$ and $\overrightarrow{OA} \cong O(-A)$. (cf Theorem OF.10(A)(4)).

(D) Combining parts (B) and (C), we have $\overrightarrow{AB} \cong \overrightarrow{O(A - B)} \cong \overrightarrow{O(B - A)}$.

Definition VEC.6 For every point $A \in \mathbb{P}$, and every real number x, define xA as in Definition REAL.19 (and summarized in Theorem REAL.20), where the line \overleftrightarrow{OA} has been built into an ordered field. xA is called the **scalar product** of x and A, and the number x is called a **scalar**.

Remark VEC.6.1 (A) By Theorem REAL.37 we know that for each real number x there exists a dilation δ_x with fixed point O such that for all $A \in \mathbb{P} \setminus \{O\}$, $xA = \delta_x(A)$.

(B) Definition VEC.6 depends explicitly on the fact that the line \overleftrightarrow{OA} has been built into an ordered field. The multiplicative field properties of this line are essential to the development of the properties of scalar product such as those stated in Theorems REAL.23 and Corollary REAL.35.1.

Theorem VEC.7

(A) For every $A \in \mathbb{P} \setminus \{O\}$, $\overleftrightarrow{OA} = \{xA \in \mathbb{P} \mid x \in \mathbb{R}\}$. That is, every line through the origin is the set of all scalar multiples of any non-O point in that line.

Moreover, if A and B are any points in \mathbb{P} and x and y are any real numbers, (B) $x(yA) = (xy)A$, (scalar multiplication is associative).
(C) \(x(A + B) = xA + xB \), (scalar multiplication is distributive with respect to addition of points)

(D) \((x + y)A = xA + yA\), (scalar multiplication is distributive with respect to addition of scalars)

(E) \(1A = A\), and

(F) \(xA = O \text{ iff } x = 0 \text{ or } A = O \) (or both).

Proof. (A) \(\overrightarrow{OA} \) is a line through the origin \(O \) and therefore is a fixed line for the dilation \(\delta_x \), whose existence is noted in Remark VEC.6.1, and hence if \(x \neq 0 \), \(xA \in \overrightarrow{OA} \). By Theorem REAL.35(A), for every \(A' \in \overrightarrow{OA} \setminus \{O\} \), there exists a real number \(t \neq 0 \) such that \(tU_1 = A' \) and a real number \(s \neq 0 \) such that \(sU_1 = A \), so that \(A' = \frac{t}{s} A \).

(B) This is Specht Ch.18 Theorem REAL.23.

(C) This is Theorem REAL.32.

(D) This is Theorem REAL.31.

(E) \(1A = A \) is immediate from Specht Ch.17 Definition QX.1(C).

(F) If \(x = 0 \) or \(A = O \) (or both), \(xA = O \) by Definition REAL.19(A)(1). If \(xA = O \), then by Theorem REAL.25 \(xA = x(U \odot A) = xU \odot A = O \) and by Specht Ch.14 Theorem OF.10(H), \(xU = 0 \) or \(A = O \). If \(xU = O \) then \(x = 0 \) by Corollary REAL.34(B).

In parts (E) and (F) we used the \(\odot \) symbol because we were referring back to the product operation used in OF and REAL on the line \(L \). \(\square \)

1.2 Vector spaces, \(\mathbb{R}^2 \) and isomorphisms

Theorem VEC.8 Let \(\mathbb{P} \) be a Euclidean/LUB plane, and let \(O \) be its origin. Let \(L_1 \) and \(L_2 \) be lines in \(\mathbb{P} \) such that \(L_1 \cap L_2 = \{O\} \). Using the machinery of Chapters 14 and 18 of Specht, build each of the lines \(L_1 \) and \(L_2 \) into an ordered field which is isomorphic to \(\mathbb{R} \), the set of all real numbers, and let \(U_1 \) and \(U_2 \), respectively, be their units, so that both \(U_1 \) and \(U_2 \) correspond to the real number 1 under their respective isomorphisms.

(A) For every \(A \in \mathbb{P} \), there exist unique real numbers \(a \) and \(b \) such that \(A = aU_1 + bU_2 \).

(B) \(aU_1 + bU_2 = O \text{ iff } a = b = O \).

(C) If \(A \notin L_1 \cup L_2 \), so that both \(a \neq 0 \) and \(b \neq 0 \), \(\overline{O(aU_1)} \cong \overline{(bU_2)A} \text{ and } \overline{O(bU_2)} \cong \overline{(aU_1)A} \).
Proof. If A is any point on \mathbb{P}, by Axiom PS there exists a unique line \mathcal{M}_1 containing the point A such that either $\mathcal{M}_1 = L_1$ (in case $A \in L_1$) or $\mathcal{M}_1 \parallel L_1$; and there exists a unique line \mathcal{M}_2 such that either $\mathcal{M}_2 = L_2$ (in case $A \in L_2$) or $\mathcal{M}_2 \parallel L_2$.

By Exercise I.1, \mathcal{M}_1 intersects L_2 in exactly one point, which we shall call A_2, and \mathcal{M}_2 intersects L_1 in exactly one point which we call A_1. By Theorem REAL.35, there exists a unique real number a such that $A_1 = aU_1$ and a unique real number b such that $A_2 = bU_2$. Since A uniquely determines \mathcal{M}_1 and \mathcal{M}_2, and these lines uniquely determine the points A_1 and A_2, which in turn uniquely determine a and b, a and b are uniquely determined by A.

Moreover, $A \in L_1$ iff $A_2 = O$ iff $b = 0$, in which case
$$A = A_1 + O = A_1 + A_2 = aU_1 + bU_2;$$
$A \in L_2$ iff $A_1 = O$ iff $a = 0$, in which case
$$A = O + A_2 = A_1 + A_2 = aU_1 + bU_2;$$
and $A = O$ iff $A \in L_1 \cap L_2$ iff $a = b = 0$, and again in this case
$$A = O + O = aU_1 + bU_2.$$

If $A \in \mathbb{P} \setminus (L_1 \cup L_2)$, by Theorem VEC.4, $aU_1 + bU_2$ is the fourth corner of the parallelogram of which O, aU_1, bU_2 are the other three corners. Since \mathcal{M}_1 contains the point A_1 and \mathcal{M}_2 contains the point A_2 and are parallel to (or equal to) L_1 and L_2, respectively, they are the same, respectively, as the sides $(aU_1)(aU_1 + bU_2)$ and $(aU_2)(aU_1 + bU_2)$ of this parallelogram. Since both \mathcal{M}_1 and \mathcal{M}_2 contain A, $A = aU_1 + bU_2$. This completes the proof of parts (A) and (B).

(C) The quadrilateral $\square O(aU_1)A(bU_2)$ is a parallelogram because $\mathcal{M}_1 \parallel L_1$ and $\mathcal{M}_2 \parallel L_2$. The result follows from Specht Ch.11 Theorem EUC.12(A). □

Definition VEC.9 (A) In Theorem VEC.8, if $L_1 \perp L_2$, the two units U_1 and U_2, together with their lines L_1 and L_2 will be referred to as a **coordinatization** of \mathbb{P}. A coordinatization based on lines L_1 and L_2 and their units U_1 and U_2 will be referred to as the **coordinatization** (U_1, U_2).

(cf Definition VEC.14(B).)

(B) L_1 and L_2 are the **axes** of this coordinatization, and O is its **origin**. For a visualization, see Figure 1.1.

(C) Interpreting \mathbb{P} as a physical plane, such as a sheet of paper or a chalkboard, if a person’s right hand is placed with the palm toward the surface so that the index finger points in the direction of $\overrightarrow{OU_1}$ and the thumb points in the direction $\overrightarrow{OU_2}$, then the coordinatization of \mathbb{P} is **right-handed**.
 Whereas, if a person’s left hand is placed palm toward the surface so that the index finger points in the direction of $\overrightarrow{OU_1}$ and the thumb points in the direction $\overrightarrow{OU_2}$, then the coordinatization of P is \textbf{left-handed}.

The rotation P such that $\rho(\overrightarrow{OU_1}) = \overrightarrow{OU_2}$ is \textbf{clockwise} for left-handed coordinatization and is \textbf{counterclockwise} for right-handed coordinatization.

Definition VEC.10 Let \mathbb{R}^2 denote the set $\mathbb{R} \times \mathbb{R} = \{(a, b) \mid a \text{ and } b \text{ are both members of } \mathbb{R}\}$, that is, \mathbb{R}^2 is the \textit{Cartesian product} of \mathbb{R} and \mathbb{R} (cf Specht Ch.1 Section 1.3).

For any (a, b) and (c, d) in \mathbb{R}^2, and any real number x, define

(A) $(a, b) + (c, d) = (a + c, b + d)$ and

(B) $x(a, b) = (xa, xb)$.

(C) For any point $(a, b) \in \mathbb{R}^2$, we will refer to a as the \textbf{first coordinate} of (a, b), and to b as the \textbf{second coordinate}.

Theorem VEC.11 For any (a, b), (c, d), and (e, f) in \mathbb{R}^2, and any real numbers x and y,

(A) (1) $(a, b) + (c, d) = (c, d) + (a, b)$ (addition is commutative).

(2) $(a, b) + ((c, d) + (e, f)) = ((a, b) + (c, d)) + (e, f)$ (addition is associative).

(3) $(a, b) + (0, 0) = (a, b)$ ($(0, 0)$ is the additive identity.)

(4) $(-a, -b) + (a, b) = (0, 0)$ ($(−a, −b)$ is the additive inverse of (a, b).)

(B) (1) $x(y(a, b) = (xy)(a, b)$ (scalar multiplication is associative).

(2) $1(a, b) = (a, b)$.

(C) (1) $x((a, b) + (c, d)) = x(a, b) + x(c, d)$ (scalar multiplication is distributive with respect to addition of points).
The following conditions (A), (B), and (C):

(A) For every pair \((a,b)\) in \(V\), there corresponds a unique vector \(x(a,b)\) such that \(x(a,b) + (0,0) = (a,b)\) and \(x(a,b) + x(c,d) = x((a,b) + (c,d))\) for all \((a,b), (c,d)\) in \(V\),

(B) For every pair \((a,b)\) in \(V\), there corresponds a unique vector \(y(a,b)\) such that \(y(a,b) + (0,0) = (a,b)\) and \(y(a,b) + y(c,d) = y((a,b) + (c,d))\) for all \((a,b), (c,d)\) in \(V\),

(C) For every pair \((a,b)\) in \(V\), there corresponds a unique vector \(z(a,b)\) such that \(z(a,b) + (0,0) = (a,b)\) and \(z(a,b) + z(c,d) = z((a,b) + (c,d))\) for all \((a,b), (c,d)\) in \(V\),

(D) For every pair \((a,b)\) in \(V\), there corresponds a unique vector \(w(a,b)\) such that \(w(a,b) + (0,0) = (a,b)\) and \(w(a,b) + w(c,d) = w((a,b) + (c,d))\) for all \((a,b), (c,d)\) in \(V\),

Proof. Using Definition VEC.10 and properties of real numbers,

(A) \((1, a, b) + (c, d) = (a + c, b) = (a, b) + (c, d)\),

(B) \((a, b) + ((c, d) + (e, f)) = (a, b) + (c, e, d + f)\)

\[= ((a + (c + e), b + (d + e)) = ((a + c) + e, (b + d) + e)\]

\[= (a + c, b + d) + (e, f) = ((a, b) + (c, d)) + (e, f)\],

(C) \((a, b) + (0, 0) = (a + 0, b + 0) = (a, b)\),

(D) \((-a, -b) + (a, b) = (a - a, b - b) = (0, 0)\).

Definition VEC.12 A vector space, or linear space over the field \(\mathbb{R}\) of real numbers (called scalars) is a set \(V\) of elements called vectors satisfying the following conditions (A), (B), and (C):

(A) To every pair \(A\) and \(B\) of vectors in \(V\) there corresponds a vector \(A + B\), called the sum of \(A\) and \(B\), such that \(V\) forms an abelian group with respect to the operation +, that is,

\[1. \ A + B = B + A \text{ for all } A \text{ and } B \text{ in } V \text{ (addition is commutative)},\]

\[2. \ A + (B + C) = (A + B) + C \text{ for all } A, B, \text{ and } C \text{ in } V \text{ (addition is associative)},\]

\[3. \text{there exists in } V \text{ a unique vector } O \text{ (called the origin) such that for every } A \in V, A + O = O \text{ (O is the additive identity)},\]

\[4. \text{to every vector } A \in V \text{ there corresponds a unique vector } -A \text{ such that } A + (-A) = O \text{ (-A is the additive inverse of } A).\]

(B) To every pair \(A\) and \(x\), where \(A \in V\) and \(x\) is a real number, there corresponds a vector \(xA \in V\) called the product, or scalar product of \(x\) and \(A\), such that

\[\begin{align*}
1. (x + y)A &= xA + yA, \\
2. A(x + y) &= Ax + Ay, \\
3. (xy)A &= x(yA), \\
4. 1A &= A,
\end{align*}\]
(1) \(x(yA) = (xy)A \) for any real numbers \(x \) and \(y \) and every \(A \in \mathbb{V} \) (multiplication by scalars is \textbf{associative}), and

(2) \(1A = A \) for every vector \(A \in \mathbb{V} \).

(C) (1) \(x(A + B) = xA + xB \) for every real number \(x \) and all vectors \(A \) and \(B \) in \(\mathbb{V} \) (scalar multiplication is \textbf{distributive} with respect to addition of vectors), and

(2) \((x + y)A = xA + yA \) for all real numbers \(x \) and \(y \) and every vectors \(A \in \mathbb{V} \) (scalar multiplication is \textbf{distributive} with respect to addition of scalars).

(D) If \(\mathbb{V} \) is a vector space, a subset \(U \subseteq \mathbb{V} \) is a \textbf{subspace} of \(\mathbb{V} \) iff it is a vector space under the same operations as in \(\mathbb{V} \). A subspace \(U \) of \(\mathbb{V} \) is said to be a \textbf{proper} subspace if there exists at least one point \(A \in \mathbb{V} \) such that \(A \notin U \).

\textbf{Remark VEC.12.1} (A) By Theorem VEC.3 and Theorem VEC.7(A), (B), (C), and (D), \(\mathbb{P} \) is an additive abelian group and a vector space. By Theorem VEC.11, \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \) is a vector space.

(B) The reader should verify for herself that \(\mathbb{R} \) is a vector space over itself—the vector space axioms are just a subset of the field axioms.

(C) The word \textit{vector} in the term \textit{vector space} does not imply their visualization as arrows on the plane in various locations (that is, “bound vectors”); if they are visualized as arrows, the initial point is always the origin \(O \).

(D) The word \textit{space} in the terms \textit{vector} or \textit{linear space} does not imply that it is ordinary “space” as in the incidence axioms. A vector space is a very general concept encompassing lines, planes, space, and spaces of higher dimension—see also Remark VEC.17.

(E) A subset \(U \) of \(\mathbb{V} \) is a subspace iff for all \(A \) and \(B \) in \(U \) and every real number \(t \), both \(A + B \in U \) and \(tA \in U \). This is because all the computational properties of \(\mathbb{V} \) are “inherited” by \(U \). The set \(\{O\} \) is a trivial subspace of \(\mathbb{V} \); also, \(\mathbb{V} \) is a subspace of itself.

\textbf{Theorem VEC.13} Every proper subspace (other than the trivial subspace \(O \)) of \(\mathbb{V} \) of the plane \(\mathbb{P} \) is a line through the origin \(O \).

\textit{Proof}. Let \(A \neq O \) be a point of \(\mathbb{V} \). Then \(\overrightarrow{OA} \subseteq \mathbb{V} \). If \(U \) is a proper subspace of \(\mathbb{P} \) we show that it cannot contain any points other than those of \(\overrightarrow{OA} \).

Suppose the contrary, that \(B \neq O \) is also a point of \(\mathbb{V} \) and \(B \notin \overrightarrow{OA} \). Then also \(\overrightarrow{OB} \subseteq \mathbb{V} \). If \(C \) is any point of \(\mathbb{P} \), let \(\mathcal{M} \) be the line through \(C \) which is parallel to \(\overrightarrow{OA} \), as guaranteed by Axiom PS. Since \(\overrightarrow{OB} \) intersects \(\overrightarrow{OA} \) at
1.2 Vector spaces, \(\mathbb{R}^2 \) and isomorphisms

\(\text{O it must also intersect} \ \mathcal{M} \text{ at some point} \ D, \text{ by Specht Ch.2 Exercise IP.4.} \)

Then \(C + (-D) \in \overrightarrow{OA}. \) Hence \(C - D + D = C \in \overrightarrow{OA} + \overrightarrow{OB} \) and therefore \(\overrightarrow{OA} + \overrightarrow{OB} = \mathbb{P}, \) and \(\mathbb{V} = \mathbb{P}, \) so it is not a proper subspace. Therefore the only proper subspaces of \(\mathbb{P} \) are lines through the origin. \(\square \)

Definition VEC.14 (A) Let \(\mathbb{P} \) be the Euclidean/LUB plane, \(O \) be its origin, and let \(L_1 \) and \(L_2 \) be perpendicular lines in \(\mathbb{P} \) such that \(L_1 \cap L_2 = \{O\} \) which have been built into ordered fields with \(U_1 \) and \(U_2, \) respectively, as their units. Define \(\lambda \) to be a mapping from \(\mathbb{P} \) to \(\mathbb{R}^2 \) as follows: for every \(A = aU_1 + bU_2 \in \mathbb{P}, \) define \(\lambda(A) = \lambda(aU_1 + bU_2) = (a, b). \)

(B) The mapping \(\lambda \) defined in part (A) may be referred to as the *coordinatization map* belonging to the coordinatization \((U_1, U_2) \) (cf Definition VEC.9(A)).

(C) A mapping \(\Phi \) from a vector space \(V \) to a vector space \(U \) is a *vector space isomorphism*, or, if the context is well understood, simply an *isomorphism* iff

1. \(\Phi \) is a group isomorphism between the two spaces (as additive groups), and
2. for every real number \(x \) and every \(A \in V, \) \(\Phi(xA) = x\Phi(V). \)

Again, as with isomorphisms of groups and fields, if two vector spaces are isomorphic, they cannot be distinguished algebraically and hence may be identified.

Remark VEC.15 It is easy to show that a bijection \(\Phi \) of \(V \) to \(U \) is a vector space isomorphism iff for all real numbers \(x \) and \(y \) and all members \(A \) and \(B \) of \(V, \) \(\Phi(xA + yB) = x\Phi(A) + y\Phi(B). \) The proof of this is Exercise VEC.2.

Theorem VEC.16 Let \(\mathbb{P}, \mathbb{R}^2, L_1, L_2 \) and \(\lambda \) be as in Definition VEC.14.

(A) \(\lambda \) is a bijection onto \(\mathbb{R}^2 \) and is a vector space isomorphism between \(\mathbb{P} \) and \(\mathbb{R}^2. \)

(B) If \(A \neq O \) is any point of \(L_1, \) then \(L_1 = \{xA \mid x \in \mathbb{R}\} \) and \(\lambda(L_1) = \{(x, 0) \mid x \in \mathbb{R}\}. \)

If \(B \neq O \) is any point of \(L_2, \) then \(L_2 = \{yB \mid y \in \mathbb{R}\} \) and \(\lambda(L_2) = \{(0, y) \mid y \in \mathbb{R}\}. \)

(C) A line \(L \parallel L_1 \) iff for some point \(C \in \mathbb{P} \setminus L_1, \) \(L = L_1 + C \) iff for some real number \(c \neq 0, \) \(\lambda(L) = \{(x, c) \mid x \in \mathbb{R}\}. \)
A line \(L \parallel L_2 \) iff for some point \(D \in \mathbb{P} \setminus L_2 \), \(L = L_2 + D \) iff for some real number \(d \neq 0 \), \(\lambda(L) = \{(d, y) \mid y \in \mathbb{R}\} \).

Proof. (A)(I) \(\lambda \) is a one-to-one mapping, for if \(\lambda(A) = \lambda(B) \), where \(A = aU_1 + bU_2 \) and \(B = cU_1 + dU_2 \), then \((a, b) = (c, d) \). \(\lambda \) is onto \(\mathbb{R}^2 \), for if \((a, b) \) is any member of \(\mathbb{R}^2 \), \(\lambda(aU_1 + bU_2) = (a, b) \). To see that it is an isomorphism, we must prove properties (1) and (2) of Definition VEC.14(C).

(1) \(\lambda \) is a group isomorphism between the two spaces (as additive groups), since for every \(A = aU_1 + bU_2 \) and \(B = cU_1 + dU_2 \) in \(\mathbb{P} \),

\[
\lambda(A + B) = \lambda((a + c)U_1 + (b + d)U_2) = (a + c, b + d) = (a,b) + (c,d) = \lambda(A) + \lambda(B).
\]

(2) For every \(A = aU_1 + bU_2 \) and every real number \(x \), using part (1)

\[
\lambda(xA) = \lambda(x(aU_1 + bU_2)) = \lambda(xaU_1 + xbU_2) = (xa, xb) = x(a,b) = x\lambda(A).
\]

The proofs of parts (B) and (C) are Exercise VEC.4. \(\Box \)

Remark VEC.17 (A) One of our objectives here is to use the fact of isomorphism between \(\mathbb{R}^2 \) and \(\mathbb{P} \) to simplify the way in which we think about points in the plane. There is something quite clumsy about having constantly to refer to a point \(A \) in the plane as \(aU_1 + bU_2 \). For many purposes it’s easier to think of (and easier to write!) such a point as a pair \((a, b)\) of real numbers.

In the following, we make the identification between \(aU_1 + bU_2 \) and \((a, b)\), treating them as if they were the same thing. We will be switching notations back and forth at will—doing so is legitimate because of the isomorphism \(\lambda \) and Theorem VEC.16. In particular, it is legitimate to write part (C) of Theorem VEC.16 just above as:

A line \(L \parallel L_1 \) iff for some real number \(c \neq 0 \), \(L = \{(x, c) \mid x \in \mathbb{R}\} \).

A line \(L \parallel L_2 \) iff for some real number \(d \neq 0 \), \(L = \{(d, y) \mid y \in \mathbb{R}\} \).

Citations to Theorem VEC.16(C) will, without further reference, be considered to include this version.

(B) In the language of vector space theory, part (B) of Theorem VEC.8 \((aU_1 + bU_2 = O \text{ iff } a = b = 0)\) says that the two vectors \(U_1 \) and \(U_2 \) are linearly independent. Also, the fact that every point \(A \) in \(\mathbb{P} \) can be expressed as \(A = aU_1 + bU_2 \) for some \(a \) and \(b \) says that the two vectors \(U_1 \) and \(U_2 \) span the space \(\mathbb{P} \). In any vector space, a set of vectors which is both linearly independent and spans the space is called a basis for the space.
1.3 Lines and their slopes

It can be shown that every vector space has a basis, and that any two bases for a given vector space have the same number of vectors, that is they have the same cardinal number (cf Specht, Chapter 1, Section 1.4). The number of elements in a basis of a space is called its dimension. Two vector spaces which are isomorphic must have the same dimension. The plane \(\mathbb{P} \) and \(\mathbb{R}^2 \) both have dimension 2. That \(\mathbb{R}^2 \) has dimension 2 can be seen without resorting to the isomorphism, by verifying that the set \{ \((1,0), (0,1) \) \} is a basis for \(\mathbb{R}^2 \).

(C) It is quite natural to extend Definition VEC.10 to vector spaces consisting of ordered triples of real numbers, and with some effort we might show that space (as defined in the axioms for incidence geometry) is isomorphic to this vector space.

We may extend these notions further to \(n \)-tuples of real numbers. Define the sum of any two \(n \)-tuples \((a_1, a_2, ..., a_n) \) and \((b_1, b_2, ..., b_n) \) in \(\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} \), as
\[
(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n),
\]
and for any real number \(x \) define the scalar product
\[
x(a_1, a_2, ..., a_n) = (xa_1, xa_2, ..., xa_n).
\]

Then it is easy to show (as we did in Theorem VEC.11 for \(\mathbb{R}^2 \)) that \(\mathbb{R}^n \) is a vector space, and that the set
\[
\{ (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, ..., 0), ..., (0, 0, 0, ..., 1) \}
\]
is a basis for \(\mathbb{R}^n \). Thus \(\mathbb{R}^n \) has dimension \(n \).

(D) In more advanced vector space theory, these notions are extended to spaces of infinite dimension. It is quite easy to see that the set of all real-valued functions defined on the unit interval \([0,1]\) (or for that matter, defined on any other fixed interval or on the whole real line) is a vector space, under pointwise addition of functions and scalar multiplication. That is, for any two functions \(f \) and \(g \) define \(f + g \) to be the function whose value at each \(x \) in their common domain is \(f(x) + g(x) \), and for any real number \(t \) define \(tf \) to be the function whose value at each \(x \) in its domain is \(tf(x) \). In general, spaces of functions do not have finite dimension.

1.3 Lines and their slopes

Again, \(\mathbb{P} \) will denote the Euclidean/LUB plane, \(O \) its origin, and \(\mathbb{L}_1 \) and \(\mathbb{L}_2 \) will be perpendicular lines in \(\mathbb{P} \) such that \(\mathbb{L}_1 \cap \mathbb{L}_2 = \{O\} \), which have been
built into ordered fields with \(U_1 \) and \(U_2 \), respectively, as their units, so that \((U_1, U_2)\) is a coordinatization of \(P \). Every point \(aU_1 + bU_2 \in P \) is identified with the point \((a, b) \in \mathbb{R}^2\) using the isomorphism \(\lambda \), as in Definition VEC.14.

Definition VEC.18 (A) A line \(L \) on \(P \) is **vertical** iff \(L \parallel L_2 \) or \(L = L_2 \), as defined in *Specht* Ch.3 Definition CAP.10.

(B) A line \(L \) on \(P \) is **horizontal** iff \(L \parallel L_1 \).

Remark VEC.18.1 (A) Part (C) of Theorem VEC.16 says that a line \(L \parallel L_1 \) (and is horizontal) iff for some real number \(c \neq 0 \), \(L = \{(x, c) \mid x \in \mathbb{R}\} \). Also, \(L \parallel L_2 \) (and is vertical) iff for some real number \(d \neq 0 \), \(L = \{(d, y) \mid y \in \mathbb{R}\} \).

(B) At the risk of seeming overly pedantic, we note the reasoning it takes to verify that any horizontal line is perpendicular to any vertical line:

By Definition VEC.9, \(L_1 \) and \(L_2 \) are perpendicular; by *Specht* Ch.8 Theorem NEUT.32 each is a fixed line for the reflection over the other; by *Specht* Ch.11 Corollary EUC.3.1 every line parallel to a fixed line for a reflection is a fixed line for that reflection. It follows that lines parallel to \(L_1 \) are fixed lines for the reflection over \(L_2 \), and by Theorem NEUT.32 are perpendicular to \(L_1 \).

By a similar argument all lines parallel to \(L_2 \) are perpendicular to \(L_1 \). By Theorem EUC.3, any line parallel to \(L_1 \) is perpendicular to any line parallel to \(L_2 \).

Theorem VEC.19 Let \(L \) be a line in \(P \) which is not vertical. There exists a real number \(m \) such that for any two points \(X = (x_1, x_2) \) and \(Y = (y_1, y_2) \) of \(L \), \(m = \frac{y_2 - x_2}{y_1 - x_1} \).

Proof. (Case 1: \(L \) is horizontal.) For any two points \(X = (x_1, x_2) \) and \(Y = (y_1, y_2) \) of \(P \), \(x_2 = y_2 \) so that for all \(X \) and \(Y \) in \(P \), \(\frac{y_2 - x_2}{y_1 - x_1} = 0 \).

(Case 2: \(L \) is not horizontal and \(O \in L \).) By Theorem REAL.37, for every real number \(t \neq 0 \) there exists a dilation \(\delta_t \) with fixed point \(O \) such that for every \(X \neq O \) in \(P \), \(tX = \delta_t(X) \). From *Specht* Ch.3 Theorem CAP.18 \(L \) is a fixed line for \(\delta_t \) so for every \(t \) and every point \(X \in L \), \(\delta_t(X) \in L \).

Assume that \(L \) has been built into an ordered field with unit \(U = (a, b) \). Then by Corollary REAL.35.1, for any two non-\(O \) points \(X = (x_1, x_2) \) and \(Y = (y_1, y_2) \) of \(L \) there exists a real number \(t \) such that \(tX = Y \). Then \(tX = t(x_1, x_2) = (tx_1, tx_2) = Y = (y_1, y_2) \).
and \(tx_1 = y_1 \) and \(tx_2 = y_2 \). It follows that \(\frac{z_2}{x_1} = \frac{z_2}{x_1} = \frac{w_2}{y_1} \) for any two points \((x_1, x_2) \) and \((y_1, y_2) \) in \(L \). Also,
\[
\frac{y_2 - y_2}{x_1 - x_1} = \frac{z_2 - z_2}{x_1 - x_1} = \frac{(t-1)x_2}{(t-1)x_1} = \frac{z_2}{x_1} = \frac{w_2}{y_1}.
\]
Now suppose that \(Z = (z_1, z_2) \) and \(W = (w_1, w_2) \) are any distinct non-\(O \) points of \(L \). By the same reasoning,
\[
\frac{z_2 - w_2}{z_1 - w_1} = \frac{z_2}{x_1} = \frac{w_2}{y_1}.
\]
Therefore \(\frac{y_2 - y_2}{y_1 - x_1} \) is independent of our choice of points \(X \) and \(Y \) on the line \(L \), so long as neither \(X = O \) or \(Y = O \).

Finally, if \(X = (x_1, x_2) = (0, 0) = O \), and \(Y = (y_1, y_2) \) is any other point on \(L \), \(\frac{y_2 - y_2}{y_1 - x_1} = \frac{z_2}{x_1} \). If we let \(m = \frac{z_2}{x_1} \), then \(m = \frac{y_2 - y_2}{y_1 - x_1} \) for any choice of \(X \) and \(Y \) on \(L \).

(Case 3: \(L \) is not horizontal and \(O \not\in L \)) Let \(A = (a, b) \) be a point of \(L \), which will be fixed for the rest of this argument. Let
\[
\mathcal{M} = L - A = \{X - A \mid X \in L\} = T_{-A}(L).
\]
By Definition CAP.6, \(\mathcal{M} \) is a line passing through \(O \) which is parallel to \(L \).

A point \(X = (x_1, x_2) \in L \) iff \(X - A = (x_1 - a, x_2 - b) \in \mathcal{M} \), and a point
\(Y = (y_1, y_2) \in L \) iff \(Y - A = (y_1 - a, y_2 - b) \in \mathcal{M} \). Then
\[
\frac{(y_2 - b) - (x_2 - b)}{(y_1 - a) - (x_1 - a)} = \frac{y_2 - b - x_2 + b}{y_1 - a - x_1 + a} = \frac{y_2 - x_2}{y_1 - x_1}.
\]
this fraction, however, has been shown in Case 2 to be independent of the points \(X \) and \(Y \), hence independent of the points \(X - A \) and \(Y - A \). This proves the theorem. \(\square \)

Definition VEC.20 Let \(L \) be a nonvertical line on \(\mathbb{P} \), and let \(X = (x_1, x_2) \) and \(Y = (y_1, y_2) \) be points on \(L \). The **slope** of \(L \) is \(m = \frac{y_2 - x_2}{y_1 - x_1} \).

Theorem VEC.21 Let \(s \) be any real number and \(Q \) be any point on \(\mathbb{P} \). Then there exists a unique line \(L \) through \(Q \) with slope \(s \).

Proof. (I: Existence.) Let \(L \) be the line through \(Q = (q_1, q_2) \) and \((q_1 + 1, q_2 + s) \). Then the slope of \(L \) is \(\frac{q_2 + s - q_2}{q_1 + 1 - q_1} = s \).

(II: Uniqueness.) Let \(\mathcal{M} \) be any nonvertical line through \(Q \) which has the same slope \(s \) as \(L \). Let the intersection of \(\mathcal{M} \) and the vertical line through \((q_1 + 1, q_2) \) be \(T = (q_1 + 1, q_2 + t) \), for some real number \(t \). The slope of \(\mathcal{M} \) is \(\frac{q_2 + s - q_2}{q_1 + 1 - q_1} = \frac{t}{1} = t \). But the slope of \(\mathcal{M} \) is \(s \), so \(s = t \) and \(T = (q_1 + 1, q_2 + s) \in L \) so that \(L \) and \(\mathcal{M} \) have two points in common, and are the same line. \(\square \)

Theorem VEC.22 (A) If \(L \) and \(\mathcal{M} \) are non-vertical lines on \(\mathbb{P} \), then \(L \) and \(\mathcal{M} \) have the same slope iff \(L \parallel \mathcal{M} \).
(B) If \(\mathcal{L} \) with slope \(s \) and \(\mathcal{M} \) with slope \(t \) are distinct non-vertical lines on \(\mathbb{P} \), then \(\mathcal{L} \perp \mathcal{M} \) iff \(st = -1 \).

Proof. (A) If \(\mathcal{L} \neq \mathcal{M} \), let \(A = (a,b) \in \mathcal{L} \) and \(B = (c,d) \in \mathcal{M} \). Then \(\mathcal{L} + (B-A) = \tau_{B-A}(\mathcal{L}) \) is a line that is parallel or equal to \(\mathcal{L} \), by Definition CAP.6. Since \(A \in \mathcal{L} \), \(A + (B-A) = B \) so \(\mathcal{L} + (B-A) \) and \(\mathcal{M} \) intersect at the point \(B \), and therefore they are the same line. If \(X = (x_1, x_2) \) is any point distinct from \(A \) in \(\mathcal{L} \), then the point \(Y = X + (B-A) = (x_1 + c-a, x_2 + d-b) \) is a point of \(\mathcal{M} \) distinct from \(B \), and the slope of \(\mathcal{M} \) is \(\frac{(x_2+d-b) - d}{(x_1+c-a) - c} = \frac{x_2-b}{x_1-a} \) which is the slope of \(\mathcal{L} \). Therefore if \(\mathcal{L} \) and \(\mathcal{M} \) are parallel, they have the same slope.

Conversely, if these two lines have the same slope, then by the previous argument, \(\mathcal{L} + (B-A) \) has the same slope as \(\mathcal{L} \) because they are parallel, and since \(\mathcal{L} + (B-A) \) and \(\mathcal{M} \) intersect at \(B \), by the uniqueness part of Theorem VEC.21, \(\mathcal{L} + (B-A) = \mathcal{M} \) and hence \(\mathcal{L} \parallel \mathcal{M} \).

(B) The proof is Exercise VEC.13. \(\square \)

Theorem VEC.23 Let \(Q = (q_1, q_2) \) be a point on \(\mathbb{P} \), \(s \) a real number, and let \(\mathcal{L} \) be the line through \(Q \) with slope \(s \). Then
\[
\mathcal{L} = \{ (x_1, x_2) \mid x_2 - q_2 - s(x_1 - q_1) = 0 \}.
\]
That is to say, a point \((x_1, x_2) \in \mathcal{L} \) iff \(x_2 = q_2 + s(x_1 - q_1) \).

Proof. Let \(X = (x_1, x_2) \), then by the uniqueness part of Theorem VEC.21, \(X \in \mathcal{L} \setminus \{ (q_1, q_2) \} \) iff \(\frac{x_2 - q_2}{x_1 - q_1} = s \). Hence \(X \in \mathcal{L} \) iff \(x_2 - q_2 - s(x_1 - q_1) = 0 \). \(\square \)

Theorem VEC.24 Let \(U = (u_1, u_2) \) and \(V = (v_1, v_2) \) be distinct points on \(\mathbb{P} \). Then \(\overleftrightarrow{U} = \{ (x_1, x_2) \mid (v_2 - u_2)(x_1 - u_1) - (v_1 - u_1)(x_2 - u_2) = 0 \} \).

Proof. (Case 1: \(\overleftrightarrow{UV} \) is nonvertical.) Let \((x_1, x_2) \) be any ordered pair of real numbers. The slope of \(\overleftrightarrow{UV} \) is \(\frac{v_2-u_2}{x_2-x_1} \), by Theorem VEC.19. Let \(U \) play the role of \(Q \) in Theorem VEC.23; then by that theorem,
\[
X \in \overleftrightarrow{UV} \text{ iff } x_2 - u_2 - \left(\frac{v_2-u_2}{x_2-x_1} \right)(x_1 - u_1) = 0,
\]
i.e., \((v_1 - u_1)(x_2 - u_2) - (v_2 - u_2)(x_1 - u_1) = 0 \).

(Case 2: \(\overleftrightarrow{UV} \) is vertical.) Let \(X = (x_1, x_2) \) be any point of \(\mathbb{P} \). Then \(\overleftrightarrow{UV} \) is vertical iff \(u_1 = v_1 \), so that \((v_1 - u_1)(x_2 - u_2) - (v_2 - u_2)(x_1 - u_1) = 0 \) becomes \((v_2 - u_2)(x_1 - u_1) = 0 \). This is true iff \(x_1 = u_1 \), which is to say, \(X = (x_1, x_2) \in \overleftrightarrow{UV} \). \(\square \)
Theorem VEC.25 Let \(U \) and \(V \) be distinct points on \(\mathbb{P} \), \(U = (u_1, u_2) \), and \(V = (v_1, v_2) \). Then
\[
\overrightarrow{UV} = \{ X \mid X = t(V - U) + U \text{ and } t \in \mathbb{R} \} = \{ (x_1, x_2) \mid (x_1, x_2) = t(v_1 - u_1) + u_1 \quad \text{and} \quad t(v_2 - u_2) + u_2 \text{ and } t \in \mathbb{R} \}.
\]

Proof. (Case 1: \(\overrightarrow{UV} \) is nonvertical.) \(\overrightarrow{UV} - U \) is a line \(\mathcal{L} \) which passes through \(O \). Assume \(\mathcal{L} \) has been built into an ordered field with \(O \neq V - U \) as its origin and unit \(U \). Then \(V - U \neq O \) is a point of \(\mathcal{L} \), and a point \(X = (x_1, x_2) \in \overrightarrow{UV} \) iff \(X - U = (x_1 - u_1, x_2 - u_2) \in \mathcal{L} \).

By Corollary REAL.35.1 and the fact that the line \(\mathcal{L} \) is fixed for \(\delta_t \), where \(t \) is any real number, we know that \(X = (x_1, x_2) \in \overrightarrow{UV} \) iff there exists a real number \(t \) such that \(X - U = t(V - U) \). That is to say,
\[
(x_1 - u_1, x_2 - u_2) = t(v_1 - u_1, v_2 - u_2) = (t(v_1 - u_1), t(v_2 - u_2)),
\]
or \((x_1, x_2) = (t(v_1 - u_1) + u_1, t(v_2 - u_2) + u_2) \).

This proves Case 1.

(Case 2: \(\overrightarrow{UV} \) is vertical.) Let \((x_1, x_2) \) be any ordered pair of real numbers. Then \(\overrightarrow{UV} \) is vertical iff \(u_1 = v_1 \). Hence in this case \(X \in \overrightarrow{UV} \) iff \(x_1 = u_1 \). We know there exists a real number \(t \) such that \(x_2 = t(v_2 - u_2) + u_2 \). Then for this value of \(t \) in particular, \(x_1 = t(0) + u_1 = t(v_1 - u_1) + u_1 \). Conversely, suppose \(x_2 = t(v_2 - u_2) + u_2 \); then since \(u_1 = v_1 \), \(x_1 = t(0) + u_1 = t(v_1 - u_1)t + u_1 \).

\[\square \]

Theorem VEC.25.1 Let \(U \) and \(V \) be distinct points on \(\mathbb{P} \), \(U = (u_1, u_2) \), and \(V = (v_1, v_2) \). The mapping \(\Theta \) of \(\mathbb{R} \) onto \(\overrightarrow{UV} \) such that for each real number \(t \), \(\Theta(t) = t(V - U) + U \) preserves order and betweenness. That is, for any real numbers \(r \), \(s \), and \(t \),
\[
r < s \text{ iff } \Theta(r) = r(V - U) + U < \Theta(s) = s(V - U) + U \text{ and } r < s \iff (r(V - U) + U) < (s(V - U) + U).
\]

Proof. Build \(\overrightarrow{UV} \) into an ordered field with origin \(\hat{O} \) and unit \(\hat{U} = V - U \). Then by Theorem VEC.25 \(\overrightarrow{UV} = \{ X \mid X = t\hat{U} + \hat{O} \text{ and } t \in \mathbb{R} \} \). By Theorem REAL.35, the mapping \(\Theta(t) = t(V - U) + U = t\hat{U} + \hat{O} = t\hat{U} \) is order preserving, that is, \(t < s \iff t\hat{U} < s\hat{U} \iff t(V - U) + U < s(V - U) + U \).

So for any three points \(X = r\hat{U}, Y = s\hat{U} \), and \(Z = t\hat{U} \) on \(\overrightarrow{UV} \), by Specht Ch.6 Theorem ORD.6
\[
X\prec Y \prec Z \iff (X < Y < Z) \text{ or } (Z < Y < X) \iff (r < s < t) \text{ or } (t < s < r)
\]
which is true iff \(r < s < t \). \(\square \)
1.4 Norms and inner products

In this section, \(\mathbb{P} \) will denote the Euclidean/LUB plane, \(O \) its origin, and \(L_1 \) and \(L_2 \) will be perpendicular lines in \(\mathbb{P} \) such that \(L_1 \cap L_2 = \{O\} \), which have been built into ordered fields with \(U_1 \) and \(U_2 \), respectively, as their units, so that \((U_1, U_2) \) is a coordinatization of \(\mathbb{P} \), and \(\overrightarrow{OU_1} \cong \overrightarrow{OU_2} \). Every point \(aU_1 + bU_2 \in \mathbb{P} \) is identified with the point \((a, b) \in \mathbb{R}^2 \) using the isomorphism \(\lambda \), as in Definition VEC.14.

Theorem VEC.26 Let \(A = a_1U_1 + a_2U_2 \) be any member of \(\mathbb{P} \). Then there exists a unique real number \(c > 0 \) such that \(\overrightarrow{OcU_1} = \overrightarrow{OA} \) and \(cU_1 = \Phi(\overrightarrow{OA}) \), where \(\Phi \) is the mapping defined in Specht Ch.9 Definition FSEG.14.

Proof. By Theorem FSEG.13 there exists a unique point \(X \in \overrightarrow{OU_1} \) such that \(\overrightarrow{OX} = \overrightarrow{OA} \). By Theorem REAL.35(A) there exists a unique real number \(c \) such that \(X = cU_1 \), and since \(X \in \overrightarrow{OU_1}, c > 0 \). \(\Box \)

Definition VEC.26.1 Let \(A \) be any member of \(\mathbb{P} \). Then if \(A \neq O \), define the **norm** of \(A \) (denoted \(\|A\| \)) as the positive real number \(c \) such that \(\overrightarrow{OA} \cong \overrightarrow{OcU_1} \) (i.e. \(cU_1 = \Phi(\overrightarrow{OA}) \)) the existence of which is guaranteed by Theorem VEC.26; if \(A = O \) define \(\|A\| = 0 \).

By Definition OF.16, \(\|A\| \) is the **length** of the segment \(\overrightarrow{OA} \), or the **distance** from \(O \) to \(A \).

Theorem VEC.26.2 For any two vectors \(A \) and \(B \) in \(\mathbb{P} \setminus \{O\} \),

\[
\|A\| = \|B\| \iff \overrightarrow{OA} \cong \overrightarrow{OB}.
\]

Proof. \(\overrightarrow{OA} \cong \overrightarrow{OB} \) iff \(\overrightarrow{OA} = \overrightarrow{OB} \) iff \(\Phi(\overrightarrow{OA}) = \Phi(\overrightarrow{OB}) \). \(\Box \)

Theorem VEC.26.3 For any two vectors \(A \) and \(B \) in \(\mathbb{P} \),

\[
\overrightarrow{AB} \cong \overrightarrow{O(B - A)}.
\]

Proof. Since \(\tau_A \) is a translation, the lines \(\overrightarrow{O(B - A)} \) and \(\tau_A(\overrightarrow{O(B - A)}) = \overrightarrow{AB} \) are parallel (cf Definition CAP.6). By Theorem VEC.4 \(\triangle AO(B - A) \) is a parallelogram. By Theorem EUC.12(A), \(\overrightarrow{AB} \cong \overrightarrow{O(B - A)} \), since these segments are opposite edges of this parallelogram. \(\Box \)

Theorem VEC.26.4 For any distinct vectors \(A \) and \(B \) in \(\mathbb{P} \), \(\|B - A\| \) is the length of the segment \(\overrightarrow{AB} \), as defined in Definition OF.16.
1.4 Norms and inner products

Proof. By Theorem VEC.26.3, \(|AB| = |O(B - A)| \), so that by Definition OF.16, the length of the segment \(AB \) is \(\Phi|AB| = \Phi|O(B - A)| = \|B - A\| \).

\[\square \]

Theorem VEC.26.5 (Third form of the Pythagorean Theorem)

For any three distinct non-collinear vectors \(A, B, \) and \(C \) in \(\mathbb{P} \),

\[\|A - B\|^2 = \|B - C\|^2 + \|A - C\|^2 \iff \angle ACB \text{ is a right angle}. \]

Proof. By Theorem VEC.26 and Theorem VEC.26.3, there exist positive real numbers \(a, b, \) and \(c \) such that \(aU_1 = \Phi|BC| = \Phi|O(B - C)| \), \(bU_1 = \Phi|AC| = \Phi|O(A - C)| \), and \(cU_1 = \Phi|AB| = \Phi|O(A - B)| \). By Definition VEC.26.1, \(a = \|B - C\|, b = \|A - C\|, \) and \(c = \|A - B\| \).

In the notation of Specht Ch.15 Theorem SIM.23.1 (Second form of the Pythagorean Theorem), let \(\hat{A} = aU_1 = \Phi|O(B - C)| \), \(\hat{B} = bU_1 = \Phi|O(A - C)| \), and \(\hat{C} = cU_1 = \Phi|O(A - B)| \). Then by that theorem, \(\angle ACB \) is right iff \((cU_1)^2 = (aU_1)^2 + (bU_1)^2 \), and by Theorem REAL.25, this is \(c^2U_1 = a^2U_1 + b^2U_1 \), or

\[c^2U_1 - a^2U_1 - b^2U_1 = (c^2 - a^2 - b^2)U_1 = 0. \]

By Corollary REAL.34(B) this is true iff \(c^2 - a^2 - b^2 = 0 \) or \(c^2 = a^2 + b^2 \).

That is, \(\|A - B\|^2 = \|B - C\|^2 + \|A - C\|^2 \). \(\square \)

Theorem VEC.27 (A) For any vector \(A = a_1U_1 + a_2U_2 \in \mathbb{P} \), \(\|A\|^2 = a_1^2 + a_2^2 \).

(B) For any distinct vectors \(A = a_1U_1 + a_2U_2 \) and \(B = b_1U_1 + b_2U_2 \) in \(\mathbb{P} \),

\[\|A - B\|^2 = (a_1 - b_1)^2 + (a_2 - b_2)^2. \]

Proof. (A) The quadrilateral \(\square O(a_1U_1)A(a_2U_2) \) is a parallelogram and

\[\frac{\overrightarrow{O(a_1U_1)}}{\overrightarrow{O(a_2U_2)}}, \]

so by Theorem EUC.3 \(\overrightarrow{O(a_1U_1)} \perp \overrightarrow{(a_1U_1)A} \). By Theorem EUC.12(A)

\[(i) \quad (a_1U_1)A \cong \overrightarrow{O(a_2U_2)}. \]

The three points \(O, a_1U_1, \) and \(A \) form a triangle, where \(\angle O(a_1U_1)A \) is right. Since \(\overrightarrow{OU_2} \cong \overrightarrow{OU_1} \), by Specht Ch.13 Theorem DLN.17 and Theorem REAL.37,

\[(ii) \quad \overrightarrow{O(a_2U_2)} \cong \overrightarrow{O(a_2U_1)}. \]

By Theorem VEC.26.3,

\[(iii) \quad (a_1U_1)A \cong \overrightarrow{O(A - a_1U_1)}. \]

Putting congruences (i), (ii) and (iii) together,

\[\overrightarrow{O(A - a_1U_1)} \cong (a_1U_1)A \cong \overrightarrow{O(a_2U_2)} \cong \overrightarrow{O(a_2U_1)}, \]
so by Definition VEC.26.1 \(\|A - a_1 U_1\| = \|a_2 U_1\| = |a_2|\). Also by definition,
\(\|a_1 U_1 - O\| = \|a_1 U_1\| = |a_1|\). By Theorem VEC.26.5,
\[
\|A\|^2 = \|A - O\|^2 = \|a_1 U_1 - O\|^2 + \|A - a_1 U_1\|^2
= |a_1|^2 + |a_2|^2 = a_1^2 + a_2^2.
\]
(B) \(A - B = a_1 U_1 + a_2 U_2 - b_1 U_1 - b_2 U_2\)
\(= a_1 U_1 - b_1 U_1 + a_2 U_2 - b_2 U_2 = (a_1 - b_1)U_1 + (a_2 - b_2)U_2\)
so by part (A) \(\|A - B\|^2 = (a_1 - b_1)^2 + (a_2 - b_2)^2\). \(\square\)

Remark VEC.28 (A) Without proof one cannot assume that for a given real number \(t\), the point \(tU_1\) rotated onto \(OU_2\) would be the same point as \(tU_2\).
That is, it’s not automatic that the scale for scalar multiplication on \(L_1\) is the same as for scalar multiplication on \(L_2\). If \(\overrightarrow{OU_1} \cong \overrightarrow{OU_2}\), Theorem REAL.37 assures us that these two scales are indeed the same, that is, \(\overrightarrow{OU_1} \cong \overrightarrow{OU_2}\).
This was important in the proof just above, because the norm is defined in terms of a scalar multiple on \(L_1\), but we wanted to express the result in terms of a scalar multiple on \(L_2\). That is why we invoked congruence (ii) in this proof.

(B) We defined the norm of a vector as a point of \(P\), in a manner quite specific to the plane. Under the identification between \(P\) and \(R^2\) provided by Definition VEC.14 and Theorem VEC.16, for any point \((a, b) \in R^2\) the result of Theorem VEC.27(A) above becomes
\[
\|(a, b)\|^2 = a^2 + b^2 \text{ or } \|(a, b)\| = \sqrt{a^2 + b^2}.
\]
For any two points \((a, b)\) and \((c, d)\) of \(R^2\), part (B) of Theorem VEC.27 becomes
\[
\|(a, b) - (c, d)\|^2 = (a - c)^2 + (b - d)^2 \\
\text{or } \|((a, b) - (c, d))\| = \sqrt{(a - c)^2 + (b - d)^2}.
\]
(C) In \(R^n\), expressions similar to those in (A) are generally used for the definition of norm. That is, for any point \((a_1, a_2, ..., a_n) \in R^n\), the norm
\[
\|(a_1, a_2, ..., a_n)\| = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}.
\]
Norms on vector spaces have a number of useful properties; we state the most fundamental of these in the following Theorem; in more general vector spaces these three properties are sometimes used as a definition of a norm.

Theorem VEC.29 For all points \(A = (a, b)\) and \(B = (c, d)\) in \(R^2\), and every real number \(x\),

1. \(\|A\| > 0\) iff \((a, b) \neq (0, 0)\);
2. \(\|A + B\| \leq \|A\| + \|B\|\); that is \(\|(a + c, b + d)\| \leq \|(a, b)\| + \|(c, d)\|\)
(of the triangle inequality); and
1.4 Norms and inner products

(3) \(\|x A\| = |x| \|A\| \), that is \(\|x(a,b)\| = |x| \|(a,b)\| \) (the homogeneity property).

Proof. The proof is Exercise VEC.6. \(\square \)

Definition VEC.30

(A) The inner product (sometimes called the dot product) of two vectors \((a, b)\) and \((c, d)\) in \(\mathbb{R}^2\) is the real number \(ac + bd\), and is denoted here by the symbol \((a, b) \cdot (c, d)\).

(B) Two vectors \((a, b)\) and \((c, d)\) are orthogonal iff \((a, b) \cdot (c, d) = 0\).

Remark VEC.31

(A) Properties of the inner product are listed and proved in Exercise VEC.7.

(B) In general vector spaces (over the field of real numbers) the inner product is defined as a real-valued function which satisfies the properties listed in Exercise VEC.7. The present definition (and its natural extensions) are valid only on \(\mathbb{R}^n\). In more general theory, the inner product of two vectors \(A\) and \(B\) is usually denoted \((A, B)\) but for our very limited treatment we avoid this notation since it may be confused with our notation for vectors in \(\mathbb{R}^2\).

Theorem VEC.32 For every vector \(A = (a, b)\), \(A \cdot A = \|A\|^2\).

Proof. \(A \cdot A = (a, b) \cdot (a, b) = a^2 + b^2 = \|A\|^2\). \(\square \)

Theorem VEC.33 Two nonzero vectors \(A = (a, b)\) and \(B = (c, d)\) are orthogonal iff \((0, 0)(a, b) \perp (0, 0)(c, d)\).

Proof. Using the properties of inner product from Exercise VEC.4,

\[
|A - B|^2 = (A - B) \cdot (A - B) = A \cdot A - 2A \cdot B + B \cdot B = |A|^2 + |B|^2 - 2A \cdot B.
\]

By the Pythagorean Theorem and its converse (cf Specht Ch.15 Theorem SIM.23) \(\overrightarrow{OA} \perp \overrightarrow{OB}\) iff \(|A - B|^2 = |A|^2 + |B|^2\). Hence \(A \cdot B = 0\) iff \(A \perp B\). \(\square \)

The equality \(|A - B|^2 = |A|^2 + |B|^2 - 2A \cdot B\) is a generalization of the Pythagorean Theorem since it holds for any triangle.
1.5 Linear mappings

In this section, \(\mathbb{P} \) will denote the Euclidean/LUB plane, \(O \) its origin, and \(L_1 \) and \(L_2 \) will be perpendicular lines in \(\mathbb{P} \) such that \(L_1 \cap L_2 = \{O\} \), which have been built into ordered fields with \(U_1 \) and \(U_2 \), respectively, as their units, so that \((U_1, U_2)\) is a coordinatization of \(\mathbb{P} \). Every point \(aU_1 + bU_2 \in \mathbb{P} \) is identified with the point \((a, b) \in \mathbb{R}^2\) using the isomorphism \(\lambda \), as in Definition VEC.14.

Definition VEC.34 Let \(\mathbb{V} \) be a vector space over the field of real numbers.

(A) A linear mapping (or linear transformation or linear operator) \(\alpha \) on \(\mathbb{V} \) is a mapping of \(\mathbb{V} \) into \(\mathbb{V} \) which satisfies the following conditions:

1. for all \(A \) and \(B \) in \(\mathbb{V} \), \(\alpha(A + B) = \alpha(A) + \alpha(B) \), and
2. for every \(A \in \mathbb{V} \) and every real number \(t \), \(\alpha(tA) = t\alpha(A) \).

(B) The mapping \(O \) is the mapping such that \(O(A) = O \) for every \(A \in \mathbb{V} \).

(C) The mapping \(-\alpha \) is the mapping such that for every \(A \in \mathbb{V} \),

\[
(-\alpha)(A) = -\alpha(A).
\]

(D) (1) The sum of two linear mappings \(\alpha \) and \(\beta \) on \(\mathbb{V} \) is the mapping \(\alpha + \beta \) such that for every \(A \in \mathbb{V} \), \((\alpha + \beta)(A) = \alpha(A) + \beta(A)\).

(2) The product or scalar product of a real number \(t \) and a linear mapping \(\alpha \) on \(\mathbb{V} \) is the mapping \(t\alpha \) such that for every \(A \in \mathbb{V} \), \((t\alpha)(A) = t(\alpha(A))\).

Theorem VEC.35 Let \(\mathbb{V} \) be a vector space over the field of real numbers.

(A) If \(\alpha \) and \(\beta \) are linear mappings on \(\mathbb{V} \), and \(t \) is any real number, then the mappings \(\alpha + \beta \) and \(t\alpha \) are linear mappings on \(\mathbb{V} \).

(B) The mappings \(O \) and \(i \) are linear mappings on \(\mathbb{V} \).

(C) For every linear mapping \(\alpha \) on \(\mathbb{V} \), the mapping \(-\alpha \) as in Definition VEC.34(C) is a linear mapping.

(D) If \(\alpha \) is any linear mapping on \(\mathbb{V} \), then

1. \(\alpha(O) = O \); and
2. for any \(A \in \mathbb{V} \), \(\alpha(-A) = -(\alpha(A)) \).

(E) The set of all linear mappings on the vector space \(\mathbb{V} \), with the definitions of sum and scalar product given in Definition VEC.34(C) is itself a vector space over the real numbers.
Proof. The proof of parts (A) through (D) is Exercise VEC.8. The proof of part (E) is Exercise VEC.9. □

Theorem VEC.36 (A) A linear mapping \(\alpha \) on a vector space \(\mathbb{V} \) is not one-to-one iff for some \(A \neq O \) in \(\mathbb{V} \), \(\alpha(A) = O \).

(B) If \(\alpha \) is a linear mapping on a vector space \(\mathbb{V} \), then the image \(\alpha(\mathbb{V}) \) of \(\mathbb{V} \) under \(\alpha \) is a subspace of \(\mathbb{V} \).

Proof. (A) If for some \(A \neq O \) in \(\mathbb{V} \), \(\alpha(A) = O \), by Theorem VEC.35(D)(1) \(\alpha(O) = O \) so \(\alpha \) is not one-to-one. Conversely, if \(\alpha \) is not one-to-one, there exist distinct points \(A \) and \(B \) of \(\mathbb{V} \) such that \(\alpha(A) = \alpha(B) \) and hence \(\alpha(A-B) = O \).

(B) Let \(A \) and \(B \) be points of \(\alpha(\mathbb{V}) \) and let \(t \) be a real number. Then there exist points \(C \) and \(D \) of \(\mathbb{V} \) such that \(\alpha(C) = A \) and \(\alpha(D) = B \). It follows that \(\alpha(C + D) = \alpha(C) + \alpha(D) = A + B \) so that \(A + B \in \alpha(\mathbb{V}) \). Also, \(\alpha(tC) = t\alpha(C) = tA \) so that \(tA \in \alpha(\mathbb{V}) \). By Remark VEC.12.1(E), \(\alpha(\mathbb{V}) \) is a subspace of \(\mathbb{V} \). □

Definition/Remark VEC.37 (A) In the remainder of this section we will often write points \(X = (x_1, x_2) \) of \(\mathbb{R}^2 \) in the form \(X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \). For each \(X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \) define \(\alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix} \).

(B) It should be noted here that the mapping \(\alpha \) is often defined in terms of matrices and matrix multiplication. A matrix is a rectangular array of numbers such as \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \). This one is a “square 2 by 2 matrix.”

Two matrices can be multiplied provided the number of columns in the left-hand matrix (multiplicand) is the same as the number of rows in the right hand matrix. Thus, \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \) and \(\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \) can be multiplied,

but \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \) and \(\begin{bmatrix} b_{11} \\ b_{12} \\ b_{13} \\ b_{21} \\ b_{22} \\ b_{23} \end{bmatrix} \) can’t.

Multiplication is carried out by the “row by column rule,” by which the \(ij \)th entry of the product (that is, the entry in the \(i \)th row and the \(j \)th column) is the sum of the products of the entries in the \(i \)th row of the left-
hand matrix with the entries in the \(j\)th column of the right hand matrix. Thus, the product
\[
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \cdot \begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{bmatrix}
\]
\[
= \begin{bmatrix}
(a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\
(a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{21}b_{13} + a_{22}b_{23})
\end{bmatrix}.
\]

We can use the same rule to express the value of the mapping \(\alpha\) on \(\mathbb{R}^2\). Recall that for each \(X \in \mathbb{R}^2\) we wrote \(X = (x_1, x_2)\) as a matrix with 2 rows and 1 column, that is, as \(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\), and we defined \(\alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix}\).

The right-hand side here is precisely the product \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\) using the row by column rule. In this usage, the matrix \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\) is said to be the \textbf{matrix of the mapping} \(\alpha\). If we know the values of \(\alpha\) at the points \((1,0)\) and \((0,1)\), we can easily find the matrix of \(\alpha\), since
\[
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]

The \textbf{determinant} of the matrix \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\) is the quantity \(a_{11}a_{22} - a_{12}a_{21}\), which is usually denoted by the symbol \(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}\). If \(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\) is the matrix of the mapping \(\alpha\) we will often say that \(a_{11}a_{22} - a_{12}a_{21}\) is the determinant of \(\alpha\).

\textbf{Theorem VEC.38} The mapping \(\alpha\) defined in Definition VEC.37 is a linear mapping on \(\mathbb{R}^2\).

\textbf{Proof.} Let \(X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\) and \(Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\) be any two points of \(\mathbb{R}^2\), and let \(t\) be any real number. Then
\[
\alpha(X + Y) = \alpha \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right) = \begin{bmatrix} a_{11}(x_1 + y_1) + a_{12}(x_2 + y_2) \\ a_{21}(x_1 + y_1) + a_{22}(x_2 + y_2) \end{bmatrix}
\]
\[
= \begin{bmatrix} a_{11}x_1 + a_{11}y_1 + a_{12}x_2 + a_{12}y_2 \\ a_{21}x_1 + a_{21}y_1 + a_{22}x_2 + a_{22}y_2 \end{bmatrix}.
\]
\[\begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix} + \begin{bmatrix} a_{11}y_1 + a_{12}y_2 \\ a_{21}y_1 + a_{22}y_2 \end{bmatrix} = \alpha(X) + \alpha(Y). \]

Also \(\alpha(tX) = \alpha\left(\begin{bmatrix} tx_1 \\ tx_2 \end{bmatrix} \right) = \begin{bmatrix} a_{11}(tx_1) + a_{12}(tx_2) \\ a_{21}(tx_1) + a_{22}(tx_2) \end{bmatrix} = \begin{bmatrix} t(a_{11}(x_1) + a_{12}(x_2)) \\ t(a_{21}(x_1) + a_{22}(x_2)) \end{bmatrix} = t\alpha(X). \] □

Theorem VEC.39 The mapping \(\alpha \) defined in Definition VEC.37 is one-to-one iff its determinant \(a_{11}a_{22} - a_{12}a_{21} \neq 0 \).

Proof. We show that there exist real numbers \(x_1 \) and \(x_2 \), not both zero, such that \(a_{11}x_1 + a_{12}x_2 = 0 \) and \(a_{21}x_1 + a_{22}x_2 = 0 \) iff the determinant \(a_{11}a_{22} - a_{12}a_{21} = 0 \). That is, the mapping \(\alpha \) is not one-to-one iff the determinant is 0.

(I) Suppose the determinant \(a_{11}a_{22} - a_{12}a_{21} = 0 \). It is quite easy to show that the mapping is not one-to-one if none of the entries \(a_{11}, a_{22}, a_{12} \) or \(a_{21} \) is zero. Sorting through the various cases where one or more of the entries is zero is not difficult, but tedious, and we leave this work to the reader as Exercise VEC.10.

If all entries are non-zero, then let \(x_1 = 1 \) and let \(x_2 = -\frac{a_{11}}{a_{12}} \). Then \(a_{21} = \frac{a_{11}a_{22}}{a_{12}} \), so that

\[a_{11}x_1 + a_{12}x_2 = a_{11} + a_{12}\left(-\frac{a_{11}}{a_{12}}\right) = a_{11} - a_{11} = 0 \]

and \(a_{21}x_1 + a_{22}x_2 = a_{21} + a_{22}\left(-\frac{a_{11}a_{22}}{a_{12}}\right) = \frac{a_{11}a_{22}}{a_{12}} - a_{22}\left(\frac{a_{11}}{a_{12}}\right) = 0 \),

so that \(\alpha(x_1, x_2) = (0, 0) \). But \((x_1, x_2) \neq (0, 0) \), so by Theorem VEC.36, \(\alpha \) is not one-to-one.

(II) Suppose \(a_{11}x_1 + a_{12}x_2 = 0 \) and \(a_{21}x_1 + a_{22}x_2 = 0 \), where not both \(x_1 \) and \(x_2 \) are zero.

If \(x_1 \neq 0 \), \(a_{11} + a_{12}\frac{x_2}{x_1} = 0 \) and \(a_{21} + a_{22}\frac{x_1}{x_2} = 0 \), so that there is no loss of generality to assume that \(x_1 = 1 \). Then the assumption takes the form

\[a_{11} + a_{12}x_2 = 0 \quad \text{and} \quad a_{21} + a_{22}x_2 = 0, \]

so that \(x_2 = -\frac{a_{11}}{a_{12}} \) and also \(x_2 = -\frac{a_{21}}{a_{22}} \), hence \(\frac{a_{11}}{a_{12}} = \frac{a_{21}}{a_{22}} \) and \(a_{11}a_{22} - a_{12}a_{21} = 0 \). If \(x_1 = 0 \) and \(x_2 \neq 0 \) then

\[0 = a_{11}x_1 + a_{12}x_2 = a_{12}x_2 \quad \text{and} \quad 0 = a_{21}x_1 + a_{22}x_2 = a_{22}x_2, \]

hence \(a_{12} = 0 \) and \(a_{12}a_{22} - a_{12}a_{21} = 0 \). □

Theorem VEC.40 A linear mapping \(\alpha \) defined on \(\mathbb{P} \) is one-to-one iff it is onto. That is, it is a bijection iff it is either one-to-one or onto.

Proof. (I) Suppose \(\alpha \) is onto \(\mathbb{P} \) and not one-to-one. There exists some point \(U_1 \neq O \) of such that \(\alpha(U_1) = O \). Let \(U_2 \) be any point such that \(\overrightarrow{OU_1} \perp \overrightarrow{OU_2} \). Build \(\overrightarrow{OU_1} \) and \(\overrightarrow{OU_2} \) into ordered fields with \(U_1 \) and \(U_2 \) as their units. \(\alpha \) is
onto means that for every point $B \in \mathbb{P}$, there exists a point A such that $\alpha(A) = B$.

By Theorem VEC.8, for some real numbers s and t, $A = sU_1 + tU_2$. Then

$$B = \alpha(A) = \alpha(sU_1) + \alpha(tU_2) = sa(U_1) + ta(U_2) = ta(U_2)$$

since $\alpha(U_1) = O$.

Therefore, every point of \mathbb{P} is a member of $\overrightarrow{O}\alpha(U_2)$. But by Axiom I.5(B) we know there are points of \mathbb{P} that are not on this line, contradicting the assumption that α is not one-to-one.

(II) Conversely, suppose that α is not onto \mathbb{P}. Then $\alpha(\mathbb{P})$ is a proper subspace of \mathbb{P}, and by Theorem VEC.13 it is a line through the origin.

Again using Theorem VEC.8, let U_1 and U_2 be any two non-O points of \mathbb{P} such that U_1, U_2 and O are noncollinear and assume that the lines $\overrightarrow{OU_1}$ and $\overrightarrow{OU_2}$ have been built into ordered fields such that for every point A of \mathbb{P} there are real numbers a and b such that $A = aU_1 + bU_2$. Then both $\alpha(U_1)$ and $\alpha(U_2)$ are members of the line $\alpha(\mathbb{P})$. If either $\alpha(U_1) = O$ or $\alpha(U_2) = O$, α is not one-to-one. If neither, then by Corollary REAL.35.1 there exists a real number t such that $\alpha(U_1) = ta(U_2)$, and

$$O = \alpha(U_1) - ta(U_2) = \alpha(U_1) - \alpha(tU_2) = \alpha(U_1 - tU_2).$$

Since the lines $\overrightarrow{OU_1}$ and $\overrightarrow{OU_2}$ have only the point O in common, $U_1 \neq tU_2$ and hence $U_1 - tU_2 \neq O$. Therefore α is not one-to-one. □

Theorem VEC.41 The linear mapping α defined on \mathbb{R}^2 by Definition VEC.37 is a bijection iff its determinant $a_{11}a_{22} - a_{12}a_{21} \neq 0$.

Proof. By Theorem VEC.39 α is one-to-one iff $a_{11}a_{22} - a_{12}a_{21} \neq 0$. By Theorem VEC.40 α is a bijection iff it is one-to-one.

Note that here we have used the identification between \mathbb{P} and \mathbb{R}^2 that was made in Theorem VEC.16 and Remark VEC.17(A). □

Theorem VEC.42 (A) The set of all bijective linear mappings on a vector space \mathbb{V} forms a group under composition of mappings.

(B) The group defined in part (A) is not abelian.

Proof. (A) By elementary function theory, composition of mappings, hence of bijective linear maps, is associative. There exists an identity i for composition, and it is a linear mapping. The composition of two bijections is a bijection, by elementary function theory. The composition of two linear mappings is linear, as can be seen from the following calculations.
Let α and β be linear maps. Then for every A and B in V, and every real number t, we have

$$\alpha \circ \beta(A + B) = \alpha(\beta(A + B)) = \alpha(\beta(A) + \beta(B)) = \alpha(\beta(A)) + \alpha(\beta(B)) = \alpha \circ \beta(A) + \alpha \circ \beta(B)$$

and

$$\alpha \circ \beta(tA) = \alpha(\beta(tA)) = \alpha(t\beta(A)) = t\alpha(\beta(A)) = t\alpha \circ \beta(A).$$

Again by elementary function theory, every bijection has an inverse which is a bijection. It remains only to prove that the inverse of a linear mapping is linear. Let α be a bijective linear map, and let β be its inverse. Then for every A and B in V, since α is onto, there exist points C and D in V such that $\alpha(C) = A$ and $\alpha(D) = B$, and by linearity of α, $\alpha(C + D) = A + B$ so that $\beta(A + B) = C + D$. Then $\beta(A + B) = C + D = \beta(A) + \beta(B)$. Also, for any real number t, $\alpha(tC) = t\alpha(C) = tA$ so that $\beta(tA) = \beta(\alpha(tC)) = tC = t\beta(A)$. Hence β is linear.

(B) The proof is Exercise VEC.11. \square

Theorem VEC.43 Let α be a bijective linear map on a vector space V. Then α has a fixed point other than O iff the mapping $\alpha - 1$ is not one-to-one.

Proof. α has a fixed point other than O iff for some point $A \neq O$, $\alpha(A) = A$, that is, $\alpha(A) - A = O$, or the mapping $\alpha - 1$ is not one-to-one. \square

1.6 Affine mappings and belineations

In this section, P will denote the Euclidean/LUB plane, O its origin, and L_1 and L_2 will be perpendicular lines in P such that $L_1 \cap L_2 = \{O\}$, which have been built into ordered fields with U_1 and U_2, respectively, as their units, so that (U_1, U_2) is a coordinatization of P. Every point $aU_1 + bU_2 \in P$ is identified with the point $(a, b) \in \mathbb{R}^2$ using the isomorphism λ, as in Definition VEC.14.

Definition VEC.44 Let V be a vector space. A mapping β of V to V is an affine mapping iff there exists a linear mapping α on V and a point D of V such that for every $A \in V$, $\beta(A) = \alpha(A) + D$. That is, $\beta = \tau_D \circ \alpha$, where τ_D is the translation such that $\tau(O) = D$.

When we wish to emphasize the relationship between α and β we will refer to β as an affine mapping associated with the linear mapping α, or to α as
the linear mapping associated with the affine mapping \(\beta \).

Remark VEC.45 An affine mapping \(\beta \) on \(\mathbb{R}^2 \) (identified with \(\mathbb{P} \)) takes the form

\[
\alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + d_1 \\ a_{21}x_1 + a_{22}x_2 + d_2 \end{bmatrix}, \text{ where } D = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}.
\]

Theorem VEC.46 (A) Let \(\alpha \) be a linear mapping on a vector space \(\mathbb{V} \) and let \(\beta \) be an affine mapping associated with \(\alpha \). Then \(\alpha \) is a bijection iff \(\beta \) is a bijection.

(B) Let \(\alpha \) be a linear mapping on \(\mathbb{R}^2 \) and \(\beta \) be an affine mapping associated with \(\alpha \). Then \(\beta \) is a bijection iff the determinant \(a_{11}a_{22} - a_{12}a_{21} \) is non-zero.

Proof. (A) For some \(D \in \mathbb{V} \), \(\beta(A) = D \circ \alpha \). Since translations are bijections (cf Theorem ISM.6 and Theorem NEUT.11), by elementary function theory, \(\beta \) is a bijection iff \(\alpha \) is a bijection.

(B) Follows directly from Part (A) and Theorem VEC.41. \(\square \)

Theorem VEC.47 If \(f_1, h_1, f_2, \) and \(h_2 \) are real numbers such that \((f_1, f_2) \neq (0, 0)\), then \(\mathcal{L} = \{(f_1t + h_1, f_2t + h_2) \mid t \in \mathbb{R} \} \) is the line through \((f_1 + h_1, f_2 + h_2)\) and \((h_1, h_2)\).

Proof. This is an immediate consequence of Theorem VEC.25, if we let \(v_i = f_i - h_i \) and \(u_i = h_i \) for \(i = 1, 2 \). \(\square \)

Theorem VEC.48 Let \(D \) be a point of \(\mathbb{R}^2 \) and let \(\alpha \) be linear mapping on \(\mathbb{R}^2 \). Define \(\beta \) to be the mapping on \(\mathbb{R}^2 \) such that for every \(A \in \mathbb{R}^2 \), \(\beta(A) = \alpha(A) + D \) (so that \(\beta \) is an affine mapping associated with \(\alpha \)). If the determinant of \(\alpha \) is nonzero, then

(A) \(\beta \) is a belineation, that is, a bijection preserving betweenness; and

(B) \(\beta \) is a collineation, mapping lines to lines.

Proof. (A) By Theorem VEC.46 both \(\alpha \) and \(\beta \) are bijections. Let \(A, B, \) and \(C \) be points of \(\mathbb{R}^2 \); using Definition LC.8 (from Specht, Chapter 21, section 21.5.2) and Theorem LC.12, \(A \rightarrow B \rightarrow C \) iff there exists a real number \(t \) such that \(0 < t < 1 \) and \(B = A + t(C - A) \). Then

\[
\beta(B) = \alpha(B) + D = \alpha((A) + t(C - A)) + D = \alpha(A) + \alpha(t(C - A)) + D = \alpha(A) + t\alpha(C - A) + D = \alpha(A) + D + t\alpha(C) + tD - t\alpha(A) - tD
\]
1.6 Affine mappings and belineations

\[
\begin{aligned}
&= \alpha(A) + D + t[(\alpha(C) + D) - (\alpha(A) + D)] \\
&= \beta(A) + t[\beta(C) - \beta(A)],
\end{aligned}
\]

so that \(\beta(A) \sim \beta(B) \sim \beta(C)\) and \(\beta\) is a belineation.

(B) By Specht Ch.21 Theorems LC.2 through LC.20, \(\mathbb{R}^2\) is a Pasch plane, since all the axioms through Axiom PSA hold. Then by Specht Ch.7 Theorem COBE.2, \(\beta\) is a collineation. \(\square\)

Theorem VEC.49 Every belineation of \(\mathbb{R}^2\) is an affine mapping of \(\mathbb{R}^2\).

Proof. Let \(\gamma\) be any belineation of \(\mathbb{R}^2\). By Specht Ch.19 Theorem AA.10, \(\gamma\) is determined by its values on any three noncollinear points. Since \(
\begin{bmatrix}
0 \\
0
\end{bmatrix},
\begin{bmatrix}
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\)
are noncollinear, let \(q_1, q_2, r_1, r_2, s_1,\) and \(s_2\) be real numbers such that

\[
\begin{aligned}
\gamma
\begin{bmatrix}
0 \\
0
\end{bmatrix}
&= \begin{bmatrix}
q_1 \\
q_2
\end{bmatrix},
\gamma
\begin{bmatrix}
1 \\
0
\end{bmatrix}
&= \begin{bmatrix}
r_1 \\
r_2
\end{bmatrix},
\gamma
\begin{bmatrix}
0 \\
1
\end{bmatrix}
&= \begin{bmatrix}
s_1 \\
s_2
\end{bmatrix},
\end{aligned}
\]

and let \(\beta\) be the affine mapping such that

\[
\begin{aligned}
\beta
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
&= \begin{bmatrix} (r_1 - q_1)x_1 + (s_1 - q_1)x_2 + q_1 \\
(r_2 - q_2)x_1 + (s_2 - q_2)x_2 + q_2 \end{bmatrix};
\end{aligned}
\]

then

\[
\begin{aligned}
\beta
\begin{bmatrix}
0 \\
0
\end{bmatrix}
&= \begin{bmatrix}
q_1 \\
q_2
\end{bmatrix},
\beta
\begin{bmatrix}
1 \\
0
\end{bmatrix}
&= \begin{bmatrix}
r_1 \\
r_2
\end{bmatrix},
\beta
\begin{bmatrix}
0 \\
1
\end{bmatrix}
&= \begin{bmatrix}
s_1 \\
s_2
\end{bmatrix},
\end{aligned}
\]

Hence \(\gamma = \beta\). Here we have followed Martin [3]. \(\square\)

Theorem VEC.50 (A) A mapping \(\alpha\) is a belineation of \(\mathbb{R}^2\) with fixed point \((0,0)\) iff it is a bijective linear map of \(\mathbb{R}^2\).

(B) The set of all belineations of \(\mathbb{R}^2\) with fixed point \((0,0)\) is a group under composition of mappings.

Proof. (A) By Theorem VEC.49, a belineation of \(\mathbb{R}^2\) is a bijective affine mapping \(\beta\) whose value at each point \(A\) is \(\beta(A) = \alpha(A) + D\) (\(\alpha\) is its associated linear map). Since \(\alpha\) is a linear map, \(\alpha(0,0) = (0,0)\), so \(\beta(0,0) = (0,0)\) iff \(D = (0,0)\), which means that \(\beta = \alpha\). Hence, every belineation of \(\mathbb{R}^2\) with fixed point \((0,0)\) is a bijective linear map. Conversely, by Theorem VEC.48

\footnote{George E. Martin, Transformation Geometry, An Introduction to Symmetry, Springer, 1982 (Theorem 15.11).}
every bijective linear map is a belineation, and every linear map has \((0,0)\) as a fixed point.

(B) By Theorem VEC.42 the set of all bijective linear maps forms a group under composition. \(\square\)

Theorem VEC.51 Let \(\alpha\) be a belineation of \(\mathbb{R}^2\) with fixed point \((0,0)\). Then by Theorem VEC.50, \(\alpha\) is a bijective linear map. Hence by Definition VEC.37 and Theorem VEC.38, there exist real numbers \(a_{11}, a_{22}, a_{12}, a_{21}\) such that for every member \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\) of \(\mathbb{R}^2\), \(\alpha\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}\). Then \(\alpha\) has no other fixed points iff \((a_{11} - 1)(a_{22} - 1) - a_{12}a_{21} \neq 0\).

Proof. By Theorem VEC.43, \(\alpha\) has a fixed point other than \((0,0)\) iff the mapping \(\alpha - i\) is not one-to-one.

For every member \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\) of \(\mathbb{R}^2\),

\[
(\alpha - i)\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} (a_{11} - 1)x_1 + a_{12}x_2 \\ a_{21}x_1 + (a_{22} - 1)x_2 \end{pmatrix}.
\]

By Theorem VEC.39, this mapping is one-to-one, hence has no fixed points other than \((0,0)\) iff \((a_{11} - 1)(a_{22} - 1) - a_{12}a_{21} \neq 0\). \(\square\)

Theorem VEC.52 A belineation \(\varphi\) of \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}\) is an isometry iff for every two distinct members \((x_1, x_2)\) and \((y_1, y_2)\) of \(\mathbb{R}^2\),

\[
\|\varphi(x_1, x_2) - \varphi(y_1, y_2)\| = \|(x_1, x_2) - (y_1, y_2)\| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.
\]

Proof. (I) Let \((x_1, x_2)\), \((y_1, y_2)\), and \((z_1, z_2)\) be three noncollinear members of \(\mathbb{R}^2\). If the equality holds for every two distinct members of \(\mathbb{R}^2\), then

\[
\|\varphi(x_1, x_2) - \varphi(y_1, y_2)\| = \|(x_1, x_2) - (y_1, y_2)\|,
\]

\[
\|\varphi(x_1, x_2) - \varphi(z_1, z_2)\| = \|(x_1, x_2) - (z_1, z_2)\|, \text{ and}
\]

\[
\|\varphi(y_1, y_2) - \varphi(z_1, z_2)\| = \|(y_1, y_2) - (z_1, z_2)\|.
\]

By Theorem VEC.26

\[
\frac{\varphi(x_1, x_2)\varphi(y_1, y_2)}{\varphi(x_1, x_2)\varphi(z_1, z_2)} \cong \frac{(x_1, x_2)(y_1, y_2)}{(x_1, x_2)(z_1, z_2)}, \text{ and}
\]

\[
\frac{\varphi(y_1, y_2)\varphi(z_1, z_2)}{\varphi(y_1, y_2)\varphi(z_1, z_2)} \cong \frac{(y_1, y_2)(z_1, z_2)}{(y_1, y_2)(z_1, z_2)}.
\]

By Theorem NEUT.62 there exists an isometry \(\psi\) of \(\mathbb{R}^2\) such that

\[
\psi(\Delta(x_1, x_2)(y_1, y_2)(z_1, z_2)) = \Delta(\varphi(x_1, x_2)\varphi(y_1, y_2)\varphi(z_1, z_2)).
\]

Since the values of \(\varphi\) and \(\psi\) agree on the three noncollinear points \((x_1, x_2)\), \((y_1, y_2)\), and \((z_1, z_2)\), by Theorem AA.10 \(\varphi = \psi\).
(II) If \(\varphi \) is an isometry of \(\mathbb{R}^2 \), by Theorem NEUT.15,
\[
\varphi((x_1, x_2)(y_1, y_2)) = \varphi(x_1, x_2)\varphi(y_1, y_2)
\]
and by Definition NEUT.6(B)
\[
(x_1, x_2)(y_1, y_2) \cong \varphi(x_1, x_2)\varphi(y_1, y_2).
\]
By Theorem VEC.26.3, this is
\[
O((x_1, x_2) - (y_1, y_2)) \cong O(\varphi(x_1, x_2) - \varphi(y_1, y_2)).
\]
and by Theorem VEC.26.2 this is equivalent to
\[
\| (x_1, x_2) - (y_1, y_2) \| = \| \varphi(x_1, x_2) - \varphi(y_1, y_2) \|.
\]
\(\square \)

Theorem VEC.53 There exists a belineation of \(\mathbb{R}^2 \) which has no fixed point and is not an isometry.

Proof. By Theorem VEC.48, an affine mapping whose associated linear map has non-zero determinant, is a collineation.

Let \(\varphi \) be the linear map of \(\mathbb{R}^2 \) such that for every member \((x_1, x_2) \in \mathbb{R}^2, \varphi(x_1, x_2) = (x_1, 2x_2) \). That is,
\[
\varphi \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 0 \cdot x_2 \\ 0 \cdot x_1 + 2 \cdot x_2 \end{bmatrix},
\]
and the determinant of \(\varphi \) is \(a_{11}a_{22} - a_{12}a_{21} = 1 \cdot 2 - 0 \cdot 0 = 2 \neq 0 \), so that \(\varphi \) is a collineation. Let \(\psi \) be the affine map such that for every member \((x_1, x_2) \) of \(\mathbb{R}^2 \), \(\psi(x_1, x_2) = (x_1 + 1, x_2) \). Then
\[
\psi \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 0 \cdot x_2 + 1 \\ 0 \cdot x_1 + 1 \cdot x_2 + 0 \end{bmatrix}, \text{ where } D = \begin{bmatrix} 1 \\ 0 \end{bmatrix},
\]
and the determinant of the linear mapping associated with \(\psi \) is
\[
a_{11}a_{22} - a_{12}a_{21} = 1 \cdot 1 - 0 \cdot 0 = 1 \neq 0,
\]
so that \(\psi \) is a collineation. Let \(\theta = \psi \circ \varphi \). Then
\[
\theta(x_1, x_2) = \psi(\varphi(x_1, x_2)) = \psi(x_1, 2x_2) = (x_1 + 1, 2x_2).
\]
If \(\theta \) had a fixed point \((x_1, x_2) \), \(x_1 = x_1 + 1 \) and \(1 = 0 \), which is false, so \(\theta \) has no fixed point. If \(\theta \) were an isometry,
\[
\| \theta(x_1, x_2) - \theta(y_1, y_2) \| = \| (x_1 + 1, 2x_2) - (y_1 + 1, 2y_2) \|
\]
so that
\[
\sqrt{(x_1 - y_1)^2 + 4(x_2 - y_2)^2} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2},
\]
and thus \(4 = 1 \) which is false. By Theorem VEC.52, \(\theta \) is not an isometry. \(\square \)
1.7 Exercises for vector spaces

Exercise VEC.1 Complete the routine computations necessary to prove Theorem VEC.3, that is, show that P is an Abelian group under the operation $+$.

Exercise VEC.2 Prove Remark VEC.15: a bijection mapping Φ from V to U is a (vector space) isomorphism iff for all real numbers x and y and all members A and B of V, $\Phi(xA + yB) = x\Phi(A) + y\Phi(B)$.

Exercise VEC.3 Assuming the hypotheses of Theorem VEC.8, let $A = aU_1 + bU_2$ and $B = cU_1 + dU_2$ be points of P. Rewrite the assertions (B) through (F) of Theorem VEC.7 in terms of U_1 and U_2.

Exercise VEC.4 Prove Theorem VEC.16(B) and (C).

Exercise VEC.5 Let P be a Euclidean/LUB plane, and let $Q = (q_1, q_2)$ and $R = (r_1, r_2)$ be distinct points of P. Then the point $M = (\frac{q_1 + r_1}{2}, \frac{q_2 + r_2}{2})$ is the midpoint of QR.

Exercise VEC.6 Prove Theorem VEC.29: for any points $A = (a,b)$ and $B = (c,d)$ in $P = \mathbb{R}^2$, and any real number x,

1. $\|A\| = \|(a,b)\| \geq 0$;
2. $\|A + B\| = \|(a + c, b + d)\| \leq \|(a,b)\| + \|(c,d)\| = \|A\| + \|B\|$; and
3. $\|xA\| = |x|(a,b)\| = |x||A|$.

Exercise VEC.7 Let A, B, and C be vectors and t be a real number; then

(A) $A \bullet B = B \bullet A$;
(B) $t(A \bullet B) = (tA) \bullet B = A \bullet (tB)$;
(C) $A \bullet (B + C) = A \bullet B + A \bullet C$; and
(D) $A \bullet A = \|A\|^2 > 0$, and $A \bullet A = 0$ iff $A = O$.

Exercise VEC.8 Prove Theorem VEC.35(A) through (D):

(A) If α and β are linear mappings on V, and t is any real number, then the mappings $\alpha + \beta$ and $t\alpha$ are linear mappings on V.

(B) The mappings O and i are linear mappings on V.

(C) For every linear mapping α on V, the mapping $-\alpha$ as in Definition VEC.34(C) is a linear mapping.

(D) If α is any linear mapping on V, then

1. $\alpha(O) = O$; and
2. for any $A \in V$, $\alpha(-A) = -(\alpha(A))$.

Exercise VEC.9* Prove Theorem VEC.35(E): the set of all linear mappings on the vector space V, with the definitions of sum and scalar product given in Definition VEC.34(C) is itself a vector space over the real numbers.

Exercise VEC.10* Complete the proof of Theorem VEC.39: if the determinant $a_{11}a_{22} - a_{12}a_{21} = 0$ and one or more of the entries a_{11}, a_{22}, a_{12} or a_{21} is zero, show that the mapping is not one-to-one.

Exercise VEC.11* Prove part (B) of Theorem VEC.42, by giving a counterexample showing that the set of all bijective linear mappings on the vector space \mathbb{R}^2 is not abelian.

Exercise VEC.12* Let P be a Euclidean/LUB plane, and let L be a line with slope s on P which is neither vertical nor horizontal. Let Q be a point on L such that $Q = (q_1, q_2)$, and let $X \neq Q$ be a point on L such that $X = (x_1, x_2)$.

If $s > 0$, then $x_1 < q_1$ and $x_2 < q_2$, or $x_1 > q_1$ and $x_2 > q_2$.

If $s < 0$, then $x_1 < q_1$ and $x_2 > q_2$, or $x_1 > q_1$ and $x_2 < q_2$.

Exercise VEC.13* Prove Theorem VEC.22(B): iff L and M be distinct lines which are neither vertical nor horizontal and which have respective slopes s and t, then $L \perp M$ iff $st = -1$.

Exercise VEC.14* Let a, b, and c be real numbers such that a and b are not both zero. Then $L = \{(x_1, x_2) \mid ax_1 + bx_2 + c = 0\}$ is characterized as follows:

(I) If $b = 0$, then $a \neq 0$ and L is the vertical line through $(\frac{-c}{a}, 0)$.

(II) If $b \neq 0$, then L is the line through $(0, \frac{-c}{b})$ with slope $\frac{-a}{b}$.

Exercise VEC.15* Let P be a Euclidean/LUB plane, and a, b, and c be real numbers where not both a and b are 0; let

$L = \{(x_1, x_2) \mid ax_1 + bx_2 + c = 0\}$

and

$M = \{(x_1, x_2) \mid bx_1 - ax_2 + c = 0\}$

Then $L \perp M$.

Exercise VEC.16* The set of collineations of \mathbb{R}^2 with $(0, 0)$ as a sole fixed point, together with the identity mapping ι, is not a group under composition of mappings.

Exercise VEC.17* There exist stretches S and T of \mathbb{R}^2 such that $T \circ S$ has only the fixed point $(0, 0)$.
Exercise VEC.18 Let k be a nonzero real number and let φ be a collineation of \mathbb{R}^2 such that for every member (x_1, x_2) of \mathbb{R}^2, $\varphi(x_1, x_2) = (kx_1, kx_2)$. Prove that

1. φ is a dilation of \mathbb{R}^2 with fixed point $(0, 0)$ (cf Specht Ch.3 Theorem CAP.22).
2. Using the equality $\varphi(x_1, x_2) = (kx_1, kx_2)$ prove that the set of dilations of \mathbb{R}^2 with fixed point $(0, 0)$, together with \mathcal{I} (the identity mapping of \mathbb{R}^2) is a group under composition of mappings.

Exercise VEC.19 Let k be a nonzero real numbers, φ be the collineation of \mathbb{R}^2 such that for every member (x_1, x_2) of \mathbb{R}^2 $\varphi(x_1, x_2) = (kx_1, x_2)$ and let ψ be the collineation of \mathbb{R}^2 such that for every member (x_1, x_2) of \mathbb{R}^2, $\psi(x_1, x_2) = (x_1, kx_2)$.

Prove: (1) φ is a stretch of \mathbb{R}^2 with axis L_1.
2. ψ is a shear of \mathbb{R}^2 with axis L_2.
3. $\varphi \circ \psi = \psi \circ \varphi$ is a dilation of \mathbb{R}^2 with fixed point $(0, 0)$.
4. The set of stretches with axis L_1 together with the identity \mathcal{I} is a group under composition of mappings. (Use the equality $\varphi(x_1, x_2) = (kx_1, k_2)$.
5. The set of stretches with axis L_2 together with the identity \mathcal{I} is a group under composition of mappings. (Use the equality $\psi(x_1, x_2) = (x_1, kx_2)$.

Exercise VEC.20 Let \mathbb{V} be a set of collineations of \mathbb{R}^2 with the property that for every member φ of \mathbb{V} there exist nonzero real numbers r and s such that for every member (x_1, x_2) of \mathbb{R}^2, $\varphi(x_1, x_2) = (rx_1, sx_2)$. Prove that $\mathbb{V} \cup \{\mathcal{I}\}$ is an abelian group under composition of mappings.

1.8 Selected answers for vector spaces

Exercise VEC.1 Proof. Let A, B, and C be any points of \mathbb{P}, and let τ_A, τ_B, and τ_C be the translations in \mathbb{T} such that $\tau_A(O) = A$, $\tau_B(O) = B$, and $\tau_C(O) = C$.

$A + B = (\tau_A \circ \tau_B)(O) \in \mathbb{P}$ since $\tau_A \circ \tau_B$ is a mapping of \mathbb{P} to \mathbb{P}, so that \mathbb{P} is closed under addition.

$A + (B + C) = (\tau_A \circ (\tau_B \circ \tau_C))(O) = ((\tau_A \circ \tau_B) \circ \tau_C)(O) = (A + B) + C$ so that addition is associative.

$A + B = (\tau_A \circ \tau_B)(O) = (\tau_B \circ \tau_A)(O) = B + A$, so addition is commutative.

$A + O = (\tau_A \circ \tau_O)(O) = (\tau_A \circ \mathcal{I})(O) = \tau_A(O) = A$ so O is the additive identity.
1.8 Selected answers for vector spaces

For any translation τ_A which maps O to A, there exists an inverse transformation τ_A^{-1}. If we define $-A = \tau_A^{-1}(O)$, $A + (-A) = (\tau_A(\tau_A^{-1}(O))) = O$ so that $-A$ is the additive inverse of A. □

Exercise VEC.2 Proof. If Φ is an isomorphism then for all real numbers x and y and all A and B in \mathbb{V}, $\Phi(xA+yB) = \Phi(xA) + \Phi(yB) = x\Phi(A) + y\Phi(B)$. Conversely, assume that for all real numbers x and y and all A and B in \mathbb{V}, $\Phi(xA+yB) = \Phi(xA) + \Phi(yB) = x\Phi(A) + y\Phi(B)$. Let $x = y = 1$; then $\Phi(A + B) = \Phi(xA + yB) = \Phi(xA) + \Phi(yB) = \Phi(A) + \Phi(B)$. Let $y = 0$; then $\Phi(xA) = \Phi(xA + 0 \cdot B) = x\Phi(A) + 0 \cdot \Phi(B) = x\Phi(A)$. Therefore Φ is an isomorphism. □

Exercise VEC.3 Proof. (B) $x(y(aU_1 + bU_2)) = x(yA) = (xy)A = (xy)aU_1 + (xy)bU_2,$
(C) $x(aU_1 + bU_2 + cU_1 + dU_2) = x(A + B) = xA + xB$
\[= x(aU_1 + cU_1 + bU_2 + dU_2)\]
\[= x(a + c)U_1 + x(b + d)U_2,\]
(D) $(x+y)(aU_1 + bU_2) = (x+y)A = xA + yA = x(aU_1 + bU_2) + y(aU_1 + bU_2),$
(E) $1(aU_1 + bU_2) = 1A = aU_1 + bU_2,$ and
(F) $x(aU_1 + bU_2) = xA = O = 0U_1 + 0U_2$ iff $x = 0$ or $A = O,$ and by the proof of Theorem VEC.7, $A = O$ means that both $a = 0$ and $b = 0$. □

Exercise VEC.4 Proof. (B) By Theorem VEC.7(A) a point $X \in \mathbb{L}_1$ iff for some real number x, $X = xA$, proving the first assertion. This is true in particular if $A = U_1$. By Theorem VEC.8(A) there exist real numbers a and b such that $X = aU_1 + bU_2.$ Thus $X \in \mathbb{L}_1$ iff for some real number x
\[O = aU_1 + bU_2 - xU_1 = aU_1 - xU_1 + bU_2 = (a - x)U_1 + bU_2\]
which by Theorem VEC.8(B) is true iff $a = x$ and $b = 0$. Therefore $X = aU_1 + bU_2 \in \mathbb{L}_1$ iff $a = x$ and $b = 0$ iff $\lambda(X) = \lambda(aU_1 + bU_2) = (a, b) = (x, 0)$ for some real number x.

A similar proof shows that $X = aU_1 + bU_2 \in \mathbb{L}_2$ iff $a = 0$ and $b = y$ iff $\lambda(X) = \lambda(aU_1 + bU_2) = (a, b) = (0, y)$ for some real number y.

(C) Let \mathcal{L} be a line in \mathbb{F} which is parallel to \mathbb{L}_1, and let $C \in \mathcal{L}$, and τ_C be the unique translation such that $\tau_C(O) = C$. Then by Definition CAP.6, $\tau_C(\mathbb{L}_1)$ is a line which is either equal to or parallel to \mathbb{L}_1, and which contains
the point C. By Axiom PS (from Specht Chapter 2) \(\mathcal{L} = \tau_C(\mathbb{L}_1) = C + \mathbb{L}_1 \),
and since $C \in \mathcal{L}$ and $\mathcal{L} \parallel \mathbb{L}_1$, $C \notin \mathbb{L}_1$.

Conversely, if for some $C \in \mathbb{P} \setminus \mathbb{L}_1$, $\mathcal{L} = C + \mathbb{L}_1$, then since $\tau_C(\mathbb{L}_1) = C + \mathbb{L}_1$
and τ is a translation, either $C + \mathbb{L}_1 \parallel \mathbb{L}_1$ or $C + \mathbb{L}_1 = \mathbb{L}_1$. But $C = C + O \notin \mathbb{L}_1$
so the latter is ruled out, and $C + \mathbb{L}_1 \parallel \mathbb{L}_1$.

This shows that $\mathcal{L} \parallel \mathbb{L}_1$ iff there exists a $C \notin \mathbb{L}_1$ such that $\mathcal{L} = C + \mathbb{L}_1$.

By Theorem VEC.8(A) every point $C \in \mathbb{P}$ can be written as $C = eU_1 + cU_2$
for some real numbers e and c. Suppose that for some $C \in \mathbb{P} \setminus \mathbb{L}_1$, $\mathcal{L} = C + \mathbb{L}_1$. By Part (B), $c \neq 0$, and also by Part (B) $X \in \mathbb{L}_1$ iff $X = xU_1$ for some real number x. Thus for every $X \in C + \mathbb{L}_1$, $X = eU_1 + cU_2 + xU_1 = yU_1 + cU_2$
for some real number $y = e + x$.

Conversely, suppose that there exists a real number $c \neq 0$ such that for every X, $X = xU_1 + cU_2$ for some real number x. Let $C = cU_2$, so that $C \notin \mathbb{L}_1$. Then since $xU_1 \in \mathbb{L}_1$, for every $X = cU_2 + xU_1$ where x is a real number,
$X = cU_2 + xU_1 = C + xU_1 \in C + \mathbb{L}_1$.

This shows that for $C \notin \mathbb{L}_1$, $X \in C + \mathbb{L}_1$ iff there exists a real number $c \neq 0$ such that $X = cU_2 + xU_1$.

Therefore $\mathcal{L} \parallel \mathbb{L}_1$ iff there exists a point $C \in \mathcal{L}$ and a real number $c \neq 0$ such that $\mathcal{L} = C + \mathbb{L}_1 = \{X \mid X = cU_2 + xU_1 \text{ and } x \in \mathbb{R}\}$, and this is true iff $\lambda(\mathcal{L}) = \lambda(C + \mathbb{L}_1) = \{(x, c) \mid x \in \mathbb{R}\}$.

A similar proof shows that a line $\mathcal{L} \parallel \mathbb{L}_2$ iff for some point $D \in \mathbb{P} \setminus \mathbb{L}_2$, $\mathcal{L} = D + \mathbb{L}_2$ iff for some real number $d \neq 0$, $\lambda(\mathcal{L}) = \{(d, y) \mid y \in \mathbb{R}\}$. \square

Exercise VEC.5 Proof. By Theorem VEC.25,
\[\overrightarrow{QR} = \{X \mid X = t(R - Q) + Q \text{ and } t \in \mathbb{R}\} \]
\[\quad = \{(x_1, x_2) \mid (x_1, x_2) = t(r_1 - q_1) + q_1 \text{ and } t(r_2 - q_2) + q_2 \text{ and } t \in \mathbb{R}\}. \]

If $t = 0$, $X = 0(R - Q) + Q = Q$ and if $t = 1$, $X = 1(R - Q) + Q = R$.

If $t = \frac{1}{2}$ then
\[X = \frac{1}{2}(R - Q) + Q = \frac{1}{2}R - \frac{1}{2}Q + Q = \frac{1}{2}R + \frac{1}{2}Q = \frac{R + Q}{2} \]
and this point belongs to \overrightarrow{QR}. But $\frac{R + Q}{2} = \left(\frac{r_1 + q_1}{2}, \frac{r_2 + q_2}{2}\right)$ which is M. By Theorem VEC.25.1, since $0 < \frac{1}{2} < 1$, $\overrightarrow{QM} \parallel R$ so $M \in \overrightarrow{QR}$. Now
\[\|Q - M\| = \sqrt{(q_1 - (\frac{r_1 + q_1}{2}))^2 + (q_2 - (\frac{r_2 + q_2}{2}))^2} \]
\[= \sqrt{\left(\frac{q_1}{2} - \frac{r_1}{2}\right)^2 + \left(\frac{q_2}{2} - \frac{r_2}{2}\right)^2}, \]
and
\[\|R - M\| = \sqrt{(r_1 - (\frac{r_1 + q_1}{2}))^2 + (r_2 - (\frac{r_2 + q_2}{2}))^2} \]
\[= \sqrt{\left(\frac{r_1}{2} - \frac{r_1}{2}\right)^2 + \left(\frac{r_2}{2} - \frac{r_2}{2}\right)^2} \]
Exercise VEC.6 Proof.

(1) \(\| (a, b) \| = \sqrt{a^2 + b^2} \geq 0\), by properties of real numbers.

(2) For any real numbers \(a, b, c\) and \(d\)

\[0 \leq (bc - ad)^2 = b^2c^2 - 2abcd + a^2d^2 \]

so \(b^2c^2 + a^2d^2 \geq 2abcd\). Then

\[0 \leq (ac + bd)^2 = a^2c^2 + 2abcd + b^2d^2 \leq a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2 \]

hence \(ac + bd \leq \| A \| \| B \|\).

Exercise VEC.7 Proof. Let \(A = (a_1, a_2), B = (b_1, b_2), C = (c_1, c_2)\), where \(a_1, a_2, b_1, b_2, c_1, c_2\) are real numbers.

(1) \(A \bullet B = a_1b_1 + a_2b_2 = b_1a_1 + b_2a_2 = B \bullet A\).

(2) \(t(A \bullet B) = t(a_1b_1 + a_2b_2)\),

\[(tA) \bullet B = (t(a_1, a_2)) \bullet (b_1, b_2) = (ta_1, ta_2) \bullet (b_1, b_2) = t(a_1b_1 + a_2b_2),\]

\[A \bullet (tB) = (a_1, a_2) \bullet (tb_1, tb_2) = (a_1b_1, a_1b_2) = a_1(t(b_1) + a_2(b_2) = t(a_1b_1 + a_2b_2).\]

(3) \((a_1, a_2) \bullet ((b_1, b_2) + (c_1, c_2)) = (a_1, a_2)(b_1 + c_1, b_2 + c_2)\)

\[= (a_1(b_1 + c_1), a_2(b_2 + c_2)) = (a_1b_1 + a_1c_1, a_2b_2 + a_2c_2) \]

\[= (a_1, a_2) \bullet (b_1, b_2) + (a_1, a_2) \bullet (c_1, c_2).\]

(4) \(A \bullet A = a_1^2 + a_2^2 = \| A \|^2\).

Exercise VEC.8 Proof. Prove Theorem VEC.35 parts (A) through (D): for all \(A\) and \(B\) in \(\mathbb{V}\), and all real numbers \(t\) and \(s\),

(A) \((\alpha + \beta)(A + B) = \alpha(A + B) + \beta(A + B)\)

\[= \alpha(A) + \alpha(B) + \beta(A) + \beta(B)\]
Thus \(\alpha \) and by associativity of scalar product,
\begin{align*}
(t\alpha)(A + B) &= t(\alpha(A + B)) = t(\alpha(A) + \alpha(B)) \\
&= t(\alpha(A)) + t(\alpha(B)) = (t\alpha)(A) + (t\alpha)(B)
\end{align*}
and by associativity of scalar product,
\begin{align*}
(t\alpha)(sA) &= t(\alpha(sA)) = t(s\alpha(A)) = (ts)\alpha(A) \\
&= (st)\alpha(A) = s(t\alpha(A) = s(t\alpha)(A).
\end{align*}
Thus \(ta \) is linear.

(B) \(O(A + B) = O = O(A) + O(B); \) \(O(tA) = O = t \cdot O = t \cdot O(A), \)
\begin{align*}
\iota(A + B) &= A + B = \iota(A) + \iota(B); \) \(\iota(tA) = t \iota(A).
\end{align*}
(C) (1) \(\alpha(A + B) + (-\alpha(A)) + (-\alpha(B)) \\
= \alpha(A) + \alpha(B) + (-\alpha(A)) + (-\alpha(B)) \\
= \alpha(A) + (-\alpha(A)) + \alpha(B) + (-\alpha(B)) = O
\end{align*}
which shows that \(-\alpha(A + B) = (-\alpha(A)) + (-\alpha(B)). \)
(2) \(\alpha(tA) + t((-\alpha)(A)) = \alpha(tA) + t(-\alpha(A)) = t(\alpha(A)) + t(-\alpha(A)) \\
= t(\alpha(A) + (-\alpha(A))) = t(O) = O,
\] which shows that \((-\alpha)(tA) = (-\alpha(tA)) = t((-\alpha)(A)). \)

(D) (1) By property (A)(2) of Definition VEC.34,
\[\alpha(O) = a(O \cdot A) = O \cdot a(A) = O. \]
(2) \(\alpha(A) + a(-A) = a(A + (-A)) = a(O) = O, \)
so \(a(-A) = -\alpha(A). \)
\(\square \)

Exercise VEC.9 Proof. Prove Theorem VEC.35(E). We key the various parts of this proof to the properties listed in Definition VEC.12. Let \(\alpha, \beta, \)
and \(\gamma \) be linear mappings on \(\mathbb{V}, \) and let \(t \) and \(s \) be any real numbers.

(A) By Exercise VEC.8(A), \(\alpha + \beta \) and \(ta \) are linear mappings. Let \(A \) and \(B \) be any members of \(\mathbb{V}. \)
(1) \((\alpha + \beta)(A) = \alpha(A) + \beta(A) = \beta(A) + \alpha(A) = (\beta + \alpha)(A) \)
so \(\alpha + \beta = \beta + \alpha. \)
(2) \((\alpha + (\beta + \gamma))(A) = \alpha(A) + (\beta + \gamma)(A) = \alpha(A) + (\beta(A) + \gamma(A)) \\
= (\alpha(A) + \beta(A)) + \gamma(A) = (\alpha + \beta)(A) + \gamma(A) \\
= ((\alpha + \beta) + \gamma)(A)
\] so \((\alpha + \beta) + \gamma = \alpha + (\beta + \gamma). \)
1.8 Selected answers for vector spaces

(3) O as defined in Definition VEC.34(B) is a linear mapping by Exercise VEC.6(B). Then $(\alpha + O)(A) = \alpha(A) + O(A) = \alpha(A) + O = \alpha(A)$ so $\alpha + O = \alpha$. If β is a linear mapping such that $\alpha + \beta = \alpha$, then for every $A \in V$, $\alpha(A) + \beta(A) = \alpha(A)$ so that $\beta(A) = O$ and thus $\beta = O$.

(4) $-\alpha$ as defined in Definition VEC.34(C) is a linear mapping by Exercise VEC.6(C). Then

$$(\alpha + (-\alpha))(A) = \alpha(A) + (-\alpha)(A) = \alpha(A) + (-\alpha(A)) = O = O(A)$$

so that $\alpha + (-\alpha) = O$. If there is a linear mapping β such that $\alpha + \beta = O$, then $O = (\alpha + \beta)(A) = \alpha(A) + \beta(A)$ so that $\beta(A) = -\alpha(A)$ for every A and hence $\beta = -\alpha$.

(B) (1) $(t(s\alpha))(A)) = t((s\alpha)(A)) = t(s(\alpha(A))) = (ts)\alpha(A) = (ts\alpha)(A)$, so that $t(s\alpha) = (ts)\alpha$.

(2) $1(\alpha)(A) = 1(\alpha(A)) = \alpha(A)$ so $1\alpha = \alpha$.

(C) (1) $(t(\alpha + \beta))(A) = t(\alpha(A) + \beta(A)) = t(\alpha(A)) + t(\beta(A))$

$$= (t\alpha)(A) + (t\beta)(A) = (t\alpha + t\beta)(A)$$

so that $t(\alpha + \beta) = t\alpha + t\beta$.

(2) $(t + s)(\alpha)(A) = (t(\alpha(A)) + s(\alpha(A))) = (t\alpha)(A) + (s\alpha)(A)$

so that $(t + s)\alpha = t\alpha + s\alpha$. □

Exercise VEC.10 Proof. In this argument we will refer to the numbers $a_{11}, a_{22}, a_{12}, a_{21}$ as the “entries.”

(Case 1) If 3 entries are 0 but a_{22} or a_{12} is nonzero, let $x_1 = 1$ and $x_2 = 0$;
and the result $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$ will follow.

(Case 2) If 3 entries are 0 but a_{11} or a_{21} is nonzero, let $x_1 = 0$ and $x_2 = 1$;
then $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$.

(Case 3) If 2 entries are 0 but a_{11} and a_{12} are nonzero, let $x_1 = a_{12}$ and
$x_2 = -a_{12}$; then $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$.

(Case 4) If 2 entries are 0 but a_{21} and a_{22} are nonzero, let $x_1 = a_{22}$ and
$x_2 = -a_{21}$; then $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$.

(Case 5) If 2 entries are 0 but a_{11} and a_{21} are nonzero, let $x_1 = 0$ and
$x_2 = 1$; then $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$.

(Case 6) If 2 entries are 0 but a_{12} and a_{22} are nonzero, let $x_1 = 1$ and
$x_2 = 0$; then $a_{11}x_1 + a_{12}x_2 = 0$ and $a_{21}x_1 + a_{22}x_2 = 0$.

(Case 7) If 2 entries are 0 but a_{11} and a_{22} are nonzero, then either a_{12} or
a_{21} is zero, and this reduces to Case 1 or 2.

(Case 8) If 2 entries are 0 but a_{12} and a_{21} are nonzero, then either a_{11} or
a_{22} is zero, and this reduces to Case 1 or 2.
(Case 9) If a single entry is zero and all others are non-zero, then by \(a_{11}a_{22} - a_{12}a_{21} = 0\) one other entry must be zero, and this reduces to one of the Cases 3 through 8. □

Exercise VEC.11 Proof. Let \(\alpha\) be the linear mapping on \(\mathbb{R}^2\) such that \(\alpha(1, 0) = (0, 1)\) and \(\alpha(0, 1) = (1, 0)\); and let \(\beta\) be the linear mapping on \(\mathbb{R}^2\) such that \(\beta(1, 0) = (1, 1)\) and \(\beta(0, 1) = (1, -1)\).

In the form of the mapping given in Definition VEC.37, for \(\alpha\), \(a_{11} = 0, a_{12} = 1, a_{21} = 1\) and \(a_{22} = 0\), so that the determinant is \(0 \cdot 0 - 1 \cdot 1 = -1 \neq 0\).

For \(\beta\) (using \(bs\) in place of \(as\)), \(b_{11} = 1, b_{12} = 1, b_{21} = 1\) and \(b_{22} = -1\), so that the determinant is \(1 \cdot (-1) - 1 \cdot 1 = -2 \neq 0\). Thus both \(\alpha\) and \(\beta\) are bijections by Theorem VEC.41.

Then \(\beta(\alpha(1, 0)) = \beta(0, 1) = (1, -1)\), and \(\beta(\alpha(0, 1)) = \beta(1, 0) = (1, 1)\), but \(\alpha(\beta(1, 0)) = \alpha(1, 1) = (1, 1)\), and \(\alpha(\beta(0, 1)) = \alpha(1, -1) = (-1, 1)\) so that \(\alpha \circ \beta \neq \beta \circ \alpha\). □

Exercise VEC.12 Proof. By Definition VEC.20 \(s = \frac{x_2 - x_1}{2x_1 - x_2}\). Hence if \(s > 0\), then \(x_1 < q_1\) and \(x_2 - q_2\) are both positive or both negative. Hence \(q_1 < x_1\) and \(q_2 < x_2\) or \(q_1 > x_1\) and \(q_2 > x_2\). If \(s < 0\), then \(x_2 - q_2\) is negative and \(x_1 - q_1\) is positive, or \(x_2 - q_2\) is positive and \(x_1 - q_1\) is negative so that either \(x_1 < q_1\) and \(x_2 > q_2\) or \(x_1 > q_1\) and \(x_2 < q_2\). □

Exercise VEC.13 Proof. Let the slope of \(L\) be \(s\) and the slope of \(M\) be \(t\).

(I) If \(L \perp M\), let \(Q = (q_1, q_2)\) be their point of intersection, and let \(N\) be the vertical line through \((q_1 + 1, q_2)\). Then the point of intersection of \(L\) and \(N\) is \(S = (q_1 + 1, q_2 + s)\) and the point of intersection of \(M\) and \(N\) is \(T = (q_1 + 1, q_2 + t)\).

(II) Conversely, if \(st = -1\), then \(s\) and \(t\) are of opposite parity (i.e. one is positive and the other is negative), and \(s \neq t\). By Theorem VEC.20 \(L\) and \(M\) are not parallel, so must intersect at some point \(Q = (q_1, q_2)\). Let \(N\) be the vertical line through \((q_1 + 1, q_2)\). Neither \(L\) nor \(M\) is vertical so there must be a point of intersection of \(N\) with each of them. The point of intersection of \(L\) and \(N\) is \(S = (q_1 + 1, q_2 + s)\) and the point of intersection of \(M\) and \(N\) is \(T = (q_1 + 1, q_2 + t)\), as before.

(III) The third form of the Pythagorean Theorem (Theorem VEC.26.5) says that \(\angle SQT\) is right iff \(\|S - T\|^2 = \|S - Q\|^2 + \|T - Q\|^2\).

By Theorem VEC.27,
\[
\|S - T\| = \sqrt{(q_1 + 1 - q_1 - 1)^2 + (q_2 + s - q_2 - t)^2} = \sqrt{(s - t)^2} = |s - t|,
\]
\[||S - Q|| = \sqrt{(q_1 + 1 - q_1)^2 + (q_2 + s - q_2)^2} = \sqrt{1^2 + s^2} = \sqrt{1 + s^2}, \text{ and} \]
\[||T - Q|| = \sqrt{(q_1 + 1 - q_1)^2 + (q_2 + t - q_2)^2} = \sqrt{1^2 + t^2} = \sqrt{1 + t^2} = 1. \]

Hence \[||S - T||^2 = ||S - Q||^2 + ||T - Q||^2 \iff |s - t|^2 = 1 + s^2 + (1 + t^2) \iff s^2 - 2st + t^2 = 1 + s^2 + 1 + t^2 \iff -2st = 2 \iff st = -1. \]

Exercise VEC.14 Proof. For reference, the equation of the line is \(ax_1 + bx_2 + c = 0. \)

(I) If \(b = 0, \) then \(L = \{(x_1, x_2) \mid x_1 = \frac{-c}{a}\}. \) It thus contains the point \(\left(\frac{-c}{a}, 0\right). \) By Theorem VEC.16 \(L \) is parallel to \(L_2 \) and by Definition VEC.18 it is a vertical line.

(II) If \(b \neq 0, \) then the point \(\left(0, \frac{-c}{b}\right) \) is on \(L, \) since \(a \cdot 0 + b\left(\frac{-c}{b}\right) + c = 0. \)

(1, \(\frac{-c}{b}\)) is a point on the line since \(a \cdot 1 + b\left(\frac{-c}{b}\right) + c = 0. \) Thus by Definition VEC.20 the slope of \(L \) is

\[
\frac{-\frac{a-c}{b} - (-c)}{1 - 0} = \frac{-a}{b},
\]

so that \(L \) is the line through \((0, \frac{-c}{b}) \) with slope \(-\frac{a}{b}. \)

Exercise VEC.15 Proof. For reference, \(L = \{(x_1, x_2) \mid ax_1 + bx_2 + c = 0\} \)

and \(M = \{(x_1, x_2) \mid bx_1 - ax_2 + c = 0\}. \)

(Case 1: \(a = 0. \)) Then \(L = \{(x_1, x_2) \mid x_2 = \frac{-c}{b}\} \) and \(M = \{(x_1, x_2) \mid x_1 = \frac{-c}{a}\}. \) By Theorem VEC.16(C), \(L \parallel L_1 \) and \(M \parallel L_2. \) By Definition VEC.18, \(L \) is horizontal and \(M \) is vertical, and by Remark VEC.18.1(B) \(L \perp M. \)

(Case 2: \(b = 0. \)) In this case \(L = \{(x_1, x_2) \mid x_1 = \frac{-c}{a}\} \) and \(M = \{(x_1, x_2) \mid x_2 = \frac{c}{b}\}. \) By Theorem VEC.16(C), \(L \parallel L_2 \) and \(M \parallel L_1. \) By Definition VEC.18, \(L \) is vertical and \(M \) is horizontal, and by Remark VEC.18.1(B) \(L \perp M. \)

(Case 3: \(a \neq 0 \) and \(b \neq 0. \)) By Exercise VEC.14(II), the slope of \(L \) is \(-\frac{a}{b}. \)

Replacing, in the argument of Exercise VEC.14(II), \(a \) with \(b \) and \(b \) with \(-a, \) we see that the slope of \(M \) is \(\frac{b}{a}. \) Thus, the product of the two slopes is \(-1, \)

and by Exercise VEC.13, \(L \perp M. \)

Exercise VEC.16 Proof. Let \(S \) and \(T \) be the collineations of \(\mathbb{R} \times \mathbb{R} \) such that for all members of \((x, y)\) of \(\mathbb{R} \times \mathbb{R}, S(x, y) = \begin{bmatrix} 2x \\ \frac{x}{2} \end{bmatrix} \) and \(T(x, y) = \begin{bmatrix} \frac{x}{2} \\ \frac{x}{2} \end{bmatrix}. \)

Since \(\begin{vmatrix} 2 & -1 & 0 \\ 0 & \frac{1}{2} & -1 \end{vmatrix} \neq 0 \) and \(\begin{vmatrix} \frac{1}{2} & -1 & 0 \\ 0 & \frac{1}{2} & -1 \end{vmatrix} \neq 0, \) by Theorem VEC.51 \(S \) and
Each have only the fixed point \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \), whereas \((T \circ S) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}\), every

member \(\begin{bmatrix} x \\ 0 \end{bmatrix} \) of \(\{ \begin{bmatrix} x \\ 0 \end{bmatrix} \mid x \in \mathbb{R} \} \) is a fixed point of \(T \circ S \). Moreover, \(T \circ S \neq \text{id} \), so that the product \(T \circ S \) is neither the identity nor a collineation with only \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) as a fixed point. Hence the set is not closed under composition, and is not a group. \(\square \)

Exercise VEC.17. Let \(r \) and \(t \) be real numbers different from 0 and \(S \) and \(T \) be the collineations of \(\mathbb{R} \times \mathbb{R} \) such that for all \(\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R} \times \mathbb{R}, \)

\[
S \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x + ry \\ y \end{bmatrix} \quad \text{and} \quad T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x \\ y + tx \end{bmatrix}.
\]

Then \((T \circ S) \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x + ry \\ tx + (1 + tr)y \end{bmatrix} \). Note that every member of the horizontal axis \(\{ (x, 0) \mid x \in \mathbb{R} \} \) is a fixed point of \(S \) and every member of the vertical axis \(\{ (0, y) \mid y \in \mathbb{R} \} \) is a fixed point of \(T \). However, since \(\begin{vmatrix} 0 & r \\ t & 1 + tr \end{vmatrix} \neq 0 \), by Theorem VEC.51, \(T \circ S \) has only the fixed point \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \). \(\square \)
Chapter 2
The Field of Complex Numbers (CX)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chapter 1 of this supplement
Acronym: CX
New terms defined: product of points on the plane, complex number, purely imaginary, real (complex numbers); real and imaginary parts, modulus, absolute value, complex conjugate (of a complex number)

In this chapter, \(\mathbb{C} \) will be the plane \(\mathbb{P} \) which, in the previous chapter (acronym VEC) was made into a vector space.

The only product defined in a general vector space is the product of a real number and a vector, that is, the scalar product. Products of vectors are not defined.\(^1\) However, the plane (the archetypical two-dimensional vector space) is quite special among vector spaces, because a coherent and useful notion of product can be constructed on it, and this product makes it into a field—the field of complex numbers.

Multiplication operations have been defined on \(n \)-tuples of real numbers in the cases where \(n = 4 \) (quaternions) and \(n = 8 \) (octonians), in addition to ordinary vector space addition on these spaces. But these systems are not fields, as in them multiplication is not commutative. Attempts have been made to define a multiplication operation on \(n \)-tuples of real numbers for \(n \geq 3 \), so that the field properties hold. There are algebraic theorems which show that such attempts cannot succeed. (cf John L. Kelley, Algebra: A Modern Introduction, D. Van Nostrand, 1965 [2]).

\(^1\) Except in the vector space \(\mathbb{R} \) where the vector space and the field are the same.
This chapter is dependent on all of Specht, and includes references such as “Theorem ROT.15” which refer to items in that work. The note Citations and references at the end of the Preface to this Supplement explains the conventions we use for such citations, and an abbreviated Table of Contents (with acronyms) for Specht is included for the reader’s guidance.

References in this chapter to items labeled VEC or CX are to this Supplement; all other references are to Specht.

2.1 Definitions and theorems for complex numbers

We now define the product of two points in \(\mathbb{C} \) and show that with this definition, together with vector space addition, \(\mathbb{C} \) is a field. We will use the symbol “·” for this new product. With one notable exception, if \(A \) and \(B \) are two points of the plane \(\mathbb{C} \) which are collinear with the origin \(O \), their product \(A \odot B \) as members of the line \(\overrightarrow{OA} \) will not be the same as their product according to our new definition. Indeed, the two products are wildly different—the product \(A \cdot B \) will in general not even belong to \(\overrightarrow{OA} \). The exception is the case where \(\overrightarrow{OA} = \mathbb{L}_1 \), where the two products agree. The new product “·” will be an extension to the whole plane of the product \(\odot \) on \(\mathbb{L}_1 \).

If we have occasion to discuss the ordered field multiplication of points on a single line (other than \(\mathbb{L}_1 \)), we may use the notation \(\odot \).

Definition CX.1 In this definition and the rest of the chapter, \(\mathbb{C} \) will denote the Euclidean/LUB plane with origin \(O \), \(\mathbb{L}_1 \) and \(\mathbb{L}_2 \) will be perpendicular lines in \(\mathbb{C} \) such that \(\mathbb{L}_1 \cap \mathbb{L}_2 = \{O\} \), which have been built into ordered fields (using the machinery of Specht Chapter 14) with \(U_1 \) and \(U_2 \), respectively, as their units, where \(\overrightarrow{OU_1} \cong \overrightarrow{OU_2} \).

Addition of points in \(\mathbb{C} \) is defined as in Definition VEC.1 and scalar product as in Definition VEC.6, so that \(\mathbb{C} \) is a vector space under the operation + and scalar product. The norm \(\|A\| \) of a point \(A \) is as in Definition VEC.26.1, and every point \(A = aU_1 + bU_2 \in \mathbb{C} \) is identified with the point \((a, b) \in \mathbb{R}^2 \) using the vector space isomorphism \(\lambda \), as in Definition VEC.14.

(A) Define the mapping \(\rho_A \) as follows:
2.1 Definitions and theorems for complex numbers 43

(i) If \(A \in \mathbb{C} \setminus \overrightarrow{OU_1} \) then \(\rho_A \) is the unique rotation of \(\mathbb{C} \) about \(O \) such that \(\rho_A(\overrightarrow{OU_1}) = \overrightarrow{OA} \). The existence and uniqueness of this rotation is guaranteed by Specht Ch.10 Theorem ROT.15.

(ii) If \(A \in \overrightarrow{OU_1} \), then \(\rho_A = \iota \) (the identity).

(iii) If \(A \in \overrightarrow{OU_1} \), where \(U_1 = O \cdot U_1 \), then \(\rho_A = \mathcal{R}_O \), where \(\mathcal{R}_O \) is the point reflection about \(O \) (cf Definition ROT.1(B), etc.).

(B) Define the mapping \(\delta_A \) as follows:

(i) If \(A \in \mathbb{C} \setminus \overrightarrow{OU_1} \) then \(\delta_A \) is the unique dilation of \(\mathbb{C} \) with fixed point \(O \) such that \(\delta_A(U_1) = \rho_A^{-1}(A) \).

This is equivalent to \(\delta_A(\rho_A(U_1)) = A \), for by Specht Ch.13 Theorem DLN.7(E),

\[
\delta_A(\rho_A(U_1)) = \rho_A(\delta_A(U_1)) = \rho_A(\rho_A^{-1}(A)) = A.
\]

A dilation cannot have two fixed points, so if \(\rho_A^{-1}(A) = U_1 \) (i.e. \(A = \rho_A(U_1) \)), define \(\delta_A = \iota \).

(ii) If \(A \in \overrightarrow{OU_1} \), then \(\delta_A \) is the unique dilation of \(\mathbb{C} \) with fixed point \(O \) such that \(\delta_A(U_1) = A \). (A dilation cannot have two fixed points, so if \(A = U_1 \), define \(\delta_A = \iota \).

The existence and uniqueness of these dilations is guaranteed by Theorem DLN.7.

(C) Define the product \(A \cdot B \) of \(A \) and \(B \) as follows:

(i) If \(A = O \) or \(B = O \) (or \(A = O = B \)), then \(A \cdot B = O \).

(ii) If \(A \) and \(B \) are both members of \(\mathbb{C} \setminus \{O\} \), then \(A \cdot B = \delta_A(\rho_A(B)) \).

The operation \(\cdot \) on \(\mathbb{C} \) is called multiplication.

(D) The points of the set \(\mathbb{C} \), which has now been equipped with the operations \(+ \) and \(\cdot \), are called complex numbers.

Remark CX.2 (A) Suppose \(A \in \overrightarrow{OU_1} \), where \(U_1 = O \cdot U_1 \). By Definition CX.1(A)(iii), \(\rho_A = \mathcal{R}_O \) and \(\delta_A(U_1) = \rho_A^{-1}(A) = \mathcal{R}_O(A) \), because \(\mathcal{R}_O^{-1} = \mathcal{R}_O \) (cf Corollary ROT.6).

(B) Applying Definition CX.1(C) to the line \(L_1 = \overrightarrow{OU_1} \) confirms that this definition agrees with \(\odot \) from Specht Ch.14 Definition OF.1. For if \(A \in \overrightarrow{OU_1} \) then \(\rho_A = \iota \) and \(\delta_A(\rho_A(U_1)) = \delta_A(\iota(U_1)) = A \) so that \(\delta_A \circ \rho_A \) is the dilation \(\delta_A \) of Definition OF.1(B). If \(A \in \overrightarrow{OU_1} \) then \(\rho_A = \mathcal{R}_O \) and by part (A) of this remark, \(\delta_A(U_1) = \mathcal{R}_O(A) \) so that

\[
(\delta_A \circ \rho_A)(U_1) = \delta_A(\rho_A(U_1)) = \mathcal{R}_O(\mathcal{R}_O(A)) = \mathcal{R}_O(\rho_A(A)) = A
\]

which agrees with the dilation \(\delta_A \) as defined in Definition OF.1(B).

Therefore the present definition of \(\cdot \) is an extension to the whole plane of the notion of product in Definition OF.1(D).
Proof. (A) (I) If \(\rho_A \) is a rotation* we mean that it is either a rotation with fixed point \(\delta = 0 \) or the identity \(\iota \). Then by Theorem DLN.20 and part (B) above, for any point \(A \) and \(B \), where the modulus of a complex number \(A \) is the length of the segment \(\overline{OA} \), or the distance from \(O \) to \(A \), as defined in Definition OF.16.

That is to say, applying \(\delta_A \) to \(\rho_A(B) \) “stretches” or “shrinks” \(\rho_A(B) \) by the same ratio as \(\delta_A \) “stretches” or “shrinks” \(U_1 \) to get \(A \).

The case where \(A \in \overline{OU_1} \) and \(U_1 \) can be a bit tricky to visualize. The rotation \(\rho_A = R_O \) maps the point \(B \) to \(-B \), and then the dilation \(\delta_A \) stretches that point in the same way that it stretches \(U_1 \) to \(-A \in \overline{OU_1}\).

Theorem CX.3 For any points \(A \) and \(B \) in \(\mathbb{C} \setminus \{O\} \),

\[
\begin{align*}
(A) & \quad (\delta \circ \rho_A)(U_1) = A, \\
(B) & \quad A \cdot B = \delta_A(\rho_A(B)) = (\delta_A \circ \rho_A \circ \delta_B \circ \rho_B)(U_1), \\
(C) & \quad \delta_{AB} = \delta_A \circ \delta_B \text{ and } \rho_{AB} = \rho_A \circ \rho_B.
\end{align*}
\]

Proof. (A) (I) If \(A \in \overline{OU_1} \), then \(\rho_A = \iota \), \(\rho_A(U_1) = U_1 \), and
\[
\delta_A(\rho_A(U_1)) = \delta_A(U_1) = A.
\]

(II) If \(A \in \mathbb{C} \setminus \overline{OU_1} \), then by Specht Ch.13 Theorem DLN7(E) \(\delta_A(\rho_A(U_1)) = \rho_A(\delta_A(U_1)) \) and by Definition CX.1(B)(i) this is \(\rho_A(\rho_A^{-1}(A)) = A \). Note that if \(A \in \overline{OU_1} \), where \(U_1 \) is a fixed line for \(\delta_A \) so that \(\rho_A^{-1}(A) \in \overline{OU_1} \), this last calculation becomes \(R_O \circ R_O(A) = A \).

(B) By Definition CX.1(C) and part (A) applied to \(B \), we have
\[
A \cdot B = \delta_A(\rho_A(B)) = \delta_A(\rho_A(\delta_B(\rho_B(U_1)))) = (\delta_A \circ \rho_A \circ \delta_B \circ \rho_B)(U_1).
\]

(C) In this part of the proof, when we say a mapping is a rotation* we mean that it is either a rotation about \(O \) or the identity \(\iota \); when we say a mapping is a dilatation* we mean that it is either a dilation with fixed point \(O \) or the identity \(\iota \).

By Theorem DLN.20, the union of the set of all rotations about \(O \) and the set of all dilations with fixed point \(O \), together with their compositions and the identity map \(\iota \) comprises an abelian group under composition. Thus by Theorem DLN.20 and part (B) above, for any \(A \) and \(B \) in \(\mathbb{C} \setminus \{O\} \),
\[
A \cdot B = (\delta_A \circ \rho_A \circ \delta_B \circ \rho_B)(U_1) = (\delta \circ \rho)(U_1)
\]
where \(\rho \) is a rotation* and \(\delta \) is a dilatation*.

By Specht Ch.3 Theorem CAP.18, \(\overline{O(A \cdot B)} \) is a fixed line for \(\delta^{-1} \), so either \(\rho(U_1) \in \overline{O(A \cdot B)} \) or \(\rho(U_1) \in \overline{O(-A \cdot B)} \). If the latter is true, define \(\delta' \) so that for every point \(X \in \mathbb{C} \), \(\delta'(X) = -\delta(X) \), and \(\rho' \) so that for every point \(X \in \mathbb{C} \), \(\rho'(X) = -\rho(X) \); then \(\rho'(U_1) \in \overline{O(A \cdot B)} \). Then
\[(\delta' \circ \rho')(U_1) = \delta'(-\rho(U_1)) = -\delta'(\rho(U_1)) = -(\delta(\rho(U_1))) = \delta(\rho(U_1)) = A \cdot B.\]

Hence in either case, there exists a dilation* \(\delta\) and a rotation* \(\rho\) such that \((\delta \circ \rho)(U_1) = A \cdot B, \rho(U_1) \in \overline{O(A \cdot B)}\), and \(\delta \circ \rho = (\delta_A \circ \delta_B) \circ (\rho_A \circ \rho_B)\). Both \(\delta\) and \(\delta_A \circ \delta_B\) are dilations* and both \(\rho\) and \(\rho_A \circ \rho_B\) are rotations*. Both \(\rho(U_1)\) and \((\rho_A \circ \rho_B)(U_1)\) are in \(\overline{O(A \cdot B)}\) and \(\overline{\rho(U_1)} \cong \overline{\rho(U_1)} \cong \overline{O(\rho_A \circ \rho_B(U_1))}\) so by Property R.4 of Specht Ch.8 Definition NEUT.2, \(\rho(U_1) = (\rho_A \circ \rho_B)(U_1)\) and thus \(\rho = \rho_A \circ \rho_B\). \(\rho\) is therefore the rotation* that maps \(\overline{OU}_1\) to \(\overline{O(A \cdot B)}\), that is, \(\rho = \rho_A \circ \rho_B = \rho_{A \cdot B}\).

Then \(\delta\) is the dilation* that maps \(\rho(U_1)\) to \(A \cdot B\) and hence is the dilation* that maps \(U_1\) to \(\rho^{-1}(A \cdot B)\); by Theorem CAP.24 there is only one such dilation* and hence \(\delta = \delta_A \circ \delta_B = \delta_{A \cdot B}\). \(\square\)

Theorem CX.4 \(\mathbb{C} \setminus \{O\}\) is an Abelian group under the operation “,” where \(U_1\) is the identity and for every \(A \in \mathbb{C} \setminus \{O\}\) the inverse of \(A\) is the point \(\delta_A^{-1}(\rho_A^{-1}(U_1))\).

Proof. Let \(G\) be the union of the set of all rotations \(\mathbb{C}\) about \(O\), the set of all dilations of \(\mathbb{C}\) with fixed point \(O\), the set of all compositions of mappings in these two sets, and \(\{i\}\).

By Theorem DLN.20 \(G\) is an Abelian group under the composition of mappings. The proof that \(\mathbb{C} \setminus \{O\}\) is an Abelian group under the operation \(\cdot\) consists of a series of calculations using Definition CX.1 and Theorem CX.3, and is left to the reader as Exercise CX.1. \(\square\)

Theorem CX.5 Let \(\varphi\) be a collineation of the Euclidean/LUB plane \(\mathbb{C}\) such that \(\varphi(0) = 0\) and let \(S\) and \(T\) be members of \(\mathbb{C}\). Then \(\varphi(S + T) = \varphi(S) + \varphi(T)\).

Proof. (Case 1: \(S = O\).) By Definition CX.1 each side of the above equality is equal to \(\varphi(T)\).

(Case 2: \(S \neq O\).) \(\tau_S\) is the translation of \(\mathbb{C}\) such that \(\tau_S(0) = S\). Then by Theorem CAP.13 \(\varphi \circ \tau_S \circ \varphi^{-1}\) is a translation of \(\mathbb{C}\). Since \((\varphi \circ \tau_S \circ \varphi^{-1})(O) = \varphi(S), \varphi \circ \tau_S \circ \varphi^{-1} = \varphi(S)\), and so \(\varphi \circ \tau_S = \tau_{\varphi(S)} \circ \varphi\) and thus \((\varphi \circ \tau_S)(T) = (\tau_{\varphi(S)} \circ \varphi)(T),\ i.e., \varphi(\tau_S(T)) = \tau_{\varphi(S)}(\varphi(T))\), or \(\varphi(S + T) = \varphi(S) + \varphi(T)\). \(\square\)

Theorem CX.6 (Distributive Property) Let \(A, B,\) and \(C\) be members of \(\mathbb{C}\). Then \(A \cdot (B + C) = (A \cdot B) + (A \cdot C)\).
Proof. Define \(\varphi = \delta_A \circ \rho_A \) as defined in Definition CX.1(A) and (B). Then \(\varphi \) is a collineation with \(\varphi(O) = O \), since both \(\delta_A \) and \(\rho_A \) are collineations with fixed point \(O \).

(Case 1: \(A = O \)) By Definitions VEC.1 and CX.1 \(A \cdot (B + C) = \varphi_A(B + C) \).

By Theorem CX.5

\[
\varphi_A(B + C) = \varphi_A(B) + \varphi_A(C) = A \cdot B + A \cdot C.
\]

(Case 2: \(A \neq O \)) Then \(A \cdot (B + C) = \varphi_A(B + C) \). By Theorem CX.5

\[
\varphi_A(B + C) = \varphi_A(B) + \varphi_A(C) = A \cdot B + A \cdot C.
\]

\(\square \)

Theorem CX.7 The Euclidean/LUB plane \(\mathbb{C} \) under the operations of addition and multiplication is a field.

Proof. This is a synthesis of Theorems VEC.3, CX.4, and CX.6. \(\square \)

Note that \(\mathbb{C} \) is not an ordered field.

Theorem CX.8 Let \(\mathbb{C} \) be the complex plane, and (as in our overall assumptions) let \(L_1 \) be a line in \(\mathbb{C} \) with origin \(O \) which has been built into an ordered field with unit \(U_1 \), the multiplicative identity for \(\mathbb{C} \). Let \(t \) be any real number, and let \(\delta_t \) be as in Definition CX.13.2, that is, for all points \(A \in L_1 \), \(\delta_t(A) = tA \).

(A) For all points \(A \in \mathbb{C} \), \(\delta_t(A) = tA \) (not just for points \(A \in L_1 \), as in Definition CX.13.2).

(B) If \(U \) is a point of \(\mathbb{C} \setminus \{L_1\} \) such that \(\overrightarrow{OU_1} \cong \overrightarrow{OU} \), then for all real numbers \(t \neq 0 \), \(\overrightarrow{OtU_1} \cong \overrightarrow{OtU} \).

(C) Let \(A \) be any point in \(\mathbb{C} \setminus \{O\} \), and suppose the line \(L = \overrightarrow{OA} \) is built into an ordered field with origin \(O \) and unit \(U \). Then \(\delta_t(A) = tA = tU_1 \cdot A \).

(D) In particular, for any \(A \in L_2 \), \(\delta_t(A) = tA = tU_1 \cdot A \).

Proof. (A) This is Specht Ch.18 Theorem REAL.37.

(B) Let \(\rho \) be the rotation of \(\mathbb{C} \) such that \(\rho(U_1) \in \overrightarrow{OU} \), so that \(\rho \) maps \(\overrightarrow{OU} \) to \(\overrightarrow{OU_1} \) and \(\rho^{-1} \) maps \(\overrightarrow{OU_1} \) to \(\overrightarrow{OU} \).

Since \(\rho \) is an isometry, \(\overrightarrow{OU} \cong \overrightarrow{OU_1} \cong \rho(U_1) \) and by Property R.4 of Specht Ch.8 Definition NEUT.2, \(\rho(U_1) = U \), that is, \(U_1 = \rho^{-1}(U) \). By Theorem DLN.17 and Theorem NEUT.15,

\[
\overrightarrow{O(\delta_t(U))} = \delta_t(\overrightarrow{OU}) \cong \delta_t(\overrightarrow{OU_1}) = O(\delta_t(U_1)).
\]

(C) It isn’t possible to directly use Theorem REAL.25 to show that \(tU_1 \cdot A = t(U_1 \cdot A) = tA \), because that theorem applies only to the product of
points in a line \(L \) through \(O \), whilst \(U_1 \) and \(A \) are points in different lines through the origin.

Let \(\rho \) be as defined in the proof of part (B). Then let \(A' = \rho^{-1}(A) \), so that \(\rho(A') = A \).

By Definition CX.1, the complex number product \(tU_1 \cdot A = \delta_{U_1}(\rho_{U_1}(A)) \) by Definition CX.1(C)

(Case 1: \(t > 0 \)) \(tU_1 \in \overrightarrow{OU_1} \) so that by Definition CX.1(A) \(\rho_{U_1} = \iota \) and hence

\[
tU_1 \cdot A = \delta_{U_1}(\rho_{U_1}(A)) = \delta_{U_1}(\rho(A')) = \rho(tA')
\]

by commutativity (Theorem DLN.7(E))

= \(\rho(tU_1 \circ A') \) by Definition OF.1(D) (both \(A' \) and \(tU_1 \in \mathbb{L}_1 \))

= \(\rho(tU_1 \cdot A') \) \(\circ \) and \(\circ \) are the same on \(\mathbb{L}_1 \)

= \(\rho(t(U_1 \cdot A')) \) by Theorem REAL.25 (both \(A' \) and \(tU_1 \in \mathbb{L}_1 \))

= \(\rho(tA') \) by identity of \(U_1 \)

= \(\rho(\delta_t(A')) \) \(\delta_t \) as in Definition REAL.38

= \(\delta_t(\rho(A')) \) commutativity (Theorem DLN.7(E))

= \(\delta_t(A) \) by definition

= \(tA \) Theorem REAL.37 applies \(\delta_t \) to all points.

(Case 2: \(t < 0 \)) \(-t = (-1)t \), so by Case 1, \(((-1)t)U_1 \cdot A = ((-1)t)A \).

The left-hand side of this equality is \(((-1)(tU_1) \cdot A = (-1)(tU_1 \cdot A) \) by Theorems REAL.23 and REAL.25. The right-hand side is \((-1)(tA) \) by Theorem REAL.25, so we have \((-1)(tU_1 \cdot A = (-1)(tA) \); multiplying both sides by \(-1\) and using Theorem REAL.25 and arithmetic, we have \(1(tU_1 \cdot A) = 1(tA) \)

which is \(tU_1 \cdot A = tA \) by Theorem VEC.7(E).

(D) This is part (A) where \(L = \mathbb{L}_2 \). \(\square \)

Remark CX.9 Theorem CX.8 shows that the comparative scales for scalar multiplication in \(\mathbb{L}_1 \) and another line through the origin are the same if the segments from \(O \) to their respective units are congruent. In particular this is true for \(\mathbb{L}_2 \).

Moreover, scalar multiplication \(tA \) agrees with complex number multiplication \(tU_1 \cdot A \).

Theorem CX.9 If \(A \) and \(B \) are distinct members of \(\mathbb{C} \setminus \overrightarrow{OU_1} \), then \(\triangle OU_1B \) is similar to \(\triangle OA(B \cdot A) \).

Proof. By Definition CX.1 and the fact that a rotation is an isometry, \(\angle U_1OB \cong \angle AO(B \cdot A) \) (cf Theorem NEUT.15). By Theorem DLN.14, dilations preserve angles so that \(\angle OU_1B \cong \angle OA(B \cdot A) \). By Definition
The Field of Complex Numbers (CX)

SIM.7, $\overline{OU_1} = \overline{OA}$ so that $\overline{OA} = [\overline{OU_1}]$; also $\overline{OA} = \overline{OB}$ so that $\overline{OA} = \overline{OB}$. Therefore the ratios of corresponding edges of $\triangle OU_1B \sim \triangle OA(B \cdot A)$ are the same. By Theorem SIM.18 $\triangle OU_1B \sim \triangle OA(B \cdot A)$. □

2.2 Computation with complex numbers

In this section, \mathbb{C} is the complex plane, which is equipped with origin O and operations $+$ and \cdot. L_1 and L_2 are perpendicular lines on \mathcal{P} intersecting at O, which are built into ordered fields with units U_1 and U_2 for L_1 and L_2, respectively. We assume that U_2 is chosen so that $\overline{OU_2} \cong \overline{OU_1}$. By Theorem CX.4 U_1 is the multiplicative identity for \mathbb{C}. By Theorem VEC.8 every complex number Z can be written as $Z = xU_1 + yU_2$ where x and y are uniquely determined real numbers. $+$ will denote addition, and \cdot will denote multiplication of two complex numbers.

Definition CX.10 (A) If $Z = xU_1 + yU_2$ is any complex number, x is said to be the real part of Z, and y is the imaginary part of Z.

(B) A complex number Z is said to be real iff $Z \in L_1$ and hence $Z = xU_1$; it is (purely) imaginary iff $Z \in L_2$ and hence $Z = yU_2$.

Theorem CX.11

(A) If x and y are any real numbers, then $xU_1 + yU_2 = O$ iff $x = y = 0$.

(B) For all real numbers x and y, $xU_1 \cdot yU_1 = (xy)U_1$.

(C) For all real numbers x and y, $xU_2 \cdot yU_2 = (xy)(U_2 \cdot U_2)$.

(D) For all real numbers x and y, $xU_1 \cdot yU_2 = yU_2 \cdot xU_1 = (xy)U_2$.

(E) $U_2 \cdot U_2 = -U_1$.

(F) $0U_1 = 0U_2 = O$.

Proof. (A) This is Theorem VEC.8(B).

(B) Since \cdot is the same as \odot on L_1, this follows from two applications of Theorem REAL.23 and one of Theorem REAL.25 as follows:

$$xU_1 \cdot yU_1 = xU_1 \odot yU_1 = x(U_1 \odot yU_1) = x(yU_1 \odot U_1) = x(y(U_1 \odot U_1)) = (xy)(U_1 \odot U_1) = (xy)U_1.$$

(C) By Theorem CX.8, $xU_2 = xU_1 \cdot U_2$ and $yU_2 = yU_1 \cdot U_2$. Then by part (C) and commutativity,
\[\begin{align*}
xU_2 \cdot yU_2 &= xU_1 \cdot U_2 \cdot yU_1 \cdot U_2 = xU_1 \cdot yU_1 \cdot U_2 \cdot U_2 \\
&= (xy)U_1 \cdot U_2 \cdot U_2 = (xy)(U_2 \cdot U_2)
\end{align*} \]

using Theorem CX.8 once again.

(D) By Theorem CX.8, \(yU_2 = yU_1 \cdot U_2 \). Using part (B),
\[xU_1 \cdot yU_2 = xU_1 \cdot yU_1 \cdot U_2 = (xy)U_1 \cdot U_2 = (xy)U_2. \]

(E) By Definition CX.1, since \(\rho_{U_2} \) is the rotation that maps \(U_1 \) to \(U_2 \),
\[\delta_{U_2} = \mathbf{i}. \] By Theorem ROT.15(A), \(\rho_{U_2} = R_M \circ R_{L_1} \), where \(M \) is the line of
symmetry of \(\angle U_1OU_2 \) (and also of its vertical angle \(\angle (-U_1)O(-U_2) \)). Then
\[R_{L_1}(U_2) \in \overline{O(-U_2)} \text{ and } R_M(-U_2) \in \overline{O(-U_1)}. \]
Hence
\[U_2 \cdot U_2 = \rho_{U_2}(U_2) = R_M(R_{L_1}(U_2)) \in \overline{O(-U_1)}. \]

The mapping \(\rho_{U_2} \), and hence also the mapping \(\rho_{U_2} \circ \rho_{U_2} \) is an isometry
so \(\overline{O(U_2 \cdot U_2)} = \overline{O(\rho_{U_2}(U_2))} \cong \overline{OU_1} \). Also \(R_O(U_1) = -U_1 \), so that
\(\overline{OU_1} \cong \overline{O(-U_1)} \) and \(\overline{O(U_2 \cdot U_2)} \cong \overline{O(-U_1)} \). By Property R.4 of Definition
NEUT.2, \(U_2 \cdot U_2 = -U_1 \).

(F) Immediate from Definition REAL.19(A)(1). \(\square \)

Remark/Definition CX.12 (A) With the rules in Theorem CX.11 just
above, together with the rules for addition and the distributive law which were
developed earlier in the chapter, we have everything we need to do complex
number arithmetic. At this point we abandon the use of capital letters \(A, B, X, \) and the like for complex numbers; henceforth we will use lower case
letters. We will usually reserve the later letters of the alphabet (\(z \) and \(w \) in
particular) for non-real complex numbers and use the earlier letters for real
numbers.

(B) We abandon \(O \) as our designation of the origin, in favor of the number
zero (0).

(C) We will use 1 for \(U_1 \), the unit in \(\mathbb{I}_1 \), which is the multiplicative identity
for \(\mathbb{C} \). This gives us the freedom to write \(xU_1 \cdot yU_1 \) as simply \(xy \).

(D) We will write \(i \) in place of \(U_2 \). Be sure not to confuse the symbol \(i \)
with the symbol \(\mathbf{i} \) for the identity.

Thus, instead of writing a complex number as \(Z = xU_1 + yU_2 \), we will
write \(z = x + yi \). It is also quite legitimate to write a complex number
\(Z = xU_1 + yU_2 \) as the ordered pair \((x, y) \).

Theorem CX.13 (Restatement of Theorem CX.12) Using the no-
tation just introduced, the statement that every complex number \(Z \) can be
written as \(Z = xU_1 + yU_2 \) where \(x \) and \(y \) are uniquely determined real num-
bers becomes “every complex number z can be written as $z = x + yi$ where x and y are uniquely determined real numbers”.

(A) If x and y are any real numbers, then $x + yi = 0$ iff $x = y = 0$.

(B) For all real numbers x and y, $xy = yx$![2]

(C) For all real numbers x and y, $(x + yi)(y + xi) = (xy)i^2$.

(D) For all real numbers x and y, $x(yi) = (xy)i$.

(E) $ii = i^2 = -1$.

(F) $0i = 0$.

Theorem CX.14 (Computation involving complex numbers.) Let $a, b, c, \text{ and } d$ be real numbers, so that $a + bi$ and $c + di$ are complex numbers. Then

(A) $(a + bi) + (c + di) = (a + c) + (b + d)i$.

(B) $(a + bi)(c + di) = (ac + bd)i + (ad + bc)i$.

(C) $(a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2$.

(D) If $c + di \neq 0$, then \[
\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac-bdi+adi-bci}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{-ad+bc}{c^2+d^2}i.
\]

Proof. We use the various rules of Theorem CX.13 as well as the field properties of \mathbb{C}.

(A) Follows immediately from commutativity of addition.

(B) $(a + bi)(c + di) = ac + bdi^2 + adi + bci = (ac - bd) + (ad + bc)i$.

(C) $(a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2$.

(D) \[
\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac-bdi+adi-bci}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{-ad+bc}{c^2+d^2}i. \quad \Box
\]

Definition CX.15 (A) The **modulus** or **absolute value** of a complex number $z = a + bi$ is its norm $||z||$, which is written in the context of complex numbers, as $|z|$.

(B) If $z = a + bi$ is any complex number, $\bar{z} = a - bi$ is its **complex conjugate**.

Remark CX.16 (A) Recalling Definition VEC.6, if $z = a + bi$ is a complex number and t is a real number, the **scalar product** $tz = ta + tbi$.

(B) By Theorem VEC.27(A), for any complex number $z = a + bi$, $|z| = \sqrt{a^2 + b^2}$.

(C) For any complex number $z = a + bi$,

$z\bar{z} = (a + bi)(a - bi) = a^2 + abi - bai - b^2i^2 = a^2 - b^2(-1) = a^2 + b^2 = |z|^2$.

\(^2\) Notation can obscure what is really going on, but in this case it’s ok, since we have proved already that $xU_1 \cdot yU_1 = (xy)U_1$.
2.2 Computation with complex numbers

(D) \(a + bi = 0 + 0i \) iff \(|a + bi| = 0\). For if \(|a + bi| = a^2 + b^2 = 0\) then since both \(a^2 \geq 0\) and \(b^2 \geq 0\), both must be zero. Here Specht Ch.14 Theorem OF.10(C) is used twice.

(E) Notice that we have two uses of the symbol \(|z|\); if \(z\) is a real number, Definition OF.13(B) applies. In this case \(|z| = z\) if \(z > 0\) and \(|z| = -z\) if \(z < 0\). If \(z\) is a non-real complex number, Definition CX.15(A) applies. In either case, \(|z|\) is the length of the segment \(\overline{0z}\), that is to say, the distance from 0 to \(z\). The two definitions agree if \(z\) is a real number.

Some authors strongly prefer the terms magnitude or modulus rather than “absolute value” for complex numbers since the common method of finding the absolute value (as defined in Definition OF.13) of a real number doesn’t work for complex numbers. This avoids the confusion possible when the same symbol is used for two different definitions. However, the term absolute value has become entrenched.

Theorem CX.17 Let \(a, b, c,\) and \(d\) be real numbers. Then

\[|(a + bi)(c + di)| = |a + bi||c + di|\]

That is, the absolute value of the product of two complex numbers is the product of their absolute values.

Proof.
\[
|(a + bi)(c + di)| = |(ac - bd) + (ad + bc)i| \\
= \sqrt{(ac - bd)^2 + (ad + bc)^2} \\
= \sqrt{a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2adbc + b^2c^2} \\
= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2} \\
= \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)} \\
= \sqrt{(a^2 + b^2)(c^2 + d^2)} \\
= \sqrt{a^2 + b^2}\sqrt{c^2 + d^2} = |a + bi||c + di|.
\]

Corollary CX.18 Let \(a, b, c,\) and \(d\) be real numbers, then \((a+bi)(c+di) = 0+0i\) iff at least one of the complex numbers \(a+bi\) or \(c+di\) is the zero complex number \(0+0i\).

Proof. The “if” part is immediate by definition, so we prove the converse. If \(|a + bi||c + di| = 0\), by Exercise CX.3 either \(|a + bi| = 0\) or \(|c + di| = 0\) (or both). It is valid to use Theorem OF.10 since we are using only properties of real numbers here. By Remark CX.16(D), either \(a = b = 0\) or \(c = d = 0\), or both. \(\square\)
2.3 Exercises for complex numbers

Exercise CX.1* Complete the computations necessary to prove Theorem CX.4.

Exercise CX.2* Let \(X \) be any nonzero complex number and let \(Y \) be any member of \(\overrightarrow{OX} \), then there exists a unique real number \(t \) such that \(Y = tX \) (cf Definition CX.7).

Exercise CX.3* Let \(A \) and \(B \) be complex numbers. \(A \odot B = O \) iff \(A = O \) or \(B = O \) (or both \(A \) and \(B \) are equal to zero).

Exercise CX.4 Following the lead of the last sentence in Remark CX.14, rewrite the conclusions of Theorem CX.15, using the notation \((x, y)\) in place of \(x + yi\).

2.4 Selected answers for complex numbers

Exercise CX.1 Proof. Let \(A, B, \) and \(C \) be any members of \(\mathbb{C} \setminus \{O\} \). By Definition CX.1, \(A \cdot B \in \mathbb{C} \setminus \{O\} \), so this set is closed under the operation.

(I) Associativity.

\[
A \cdot (B \cdot C) = (A \cdot (\delta_B \circ \rho_B \circ \delta_C \circ \rho_C)(U_1)) \quad \text{by Theorem CX.3(B)} \\
= (\delta_A \circ \rho_A)((\delta_B \circ \rho_B \circ \delta_C \circ \rho_C)(U_1)) \quad \text{Definition CX.1(C)} \\
= (\delta_A \circ \rho_A) \circ (\delta_B \circ \rho_B \circ \delta_C \circ \rho_C)(U_1) \quad \text{Definition CX.1(C)} \\
= (\delta_A \circ \rho_A) \circ (\delta_B \circ \rho_B) \circ (\delta_C \circ \rho_C)(U_1) \quad \text{Theorem DLN.7(E)} \\
= (\delta_A \cdot \delta_B \cdot \rho_A \cdot \rho_B \circ \delta_C \circ \rho_C)(U_1) \quad \text{Theorem CX.3(C)} \\
= (\delta_A \cdot \delta_B \cdot \rho_A \cdot \rho_B \circ \delta_C \circ \rho_C)(U_1) \quad \text{Theorem CX.1(C)} \\
= (A \cdot B) \cdot C \quad \text{Definition CX.1(C)}
\]

(II) Identity. By Definition CX.1, \(A \cdot U_1 = \delta_A \circ \rho_A(U_1) = A \), so that \(U_1 \) is the multiplicative identity.

(III) Commutativity. By Definition CX.1, and Theorem DLN.22 (commutativity of \(\mathbb{G} \))

\[
A \cdot B = \delta_A \circ \rho_A(\delta_B \circ \rho_B(U_1)) = (\delta_A \circ \rho_A \circ \delta_B \circ \rho_B)(U_1) \\
= (\delta_B \circ \rho_B \circ \delta_A \circ \rho_A)(U_1) = \delta_B \circ \rho_B(\delta_A \circ \rho_A \circ \rho_B(U_1)) = B \cdot A.
\]
(IV) Inverses. Let $A^{-1} = \delta_A^{-1}(\rho_A^{-1}(U_1))$. Then by Theorem DLN.20(A) (commutativity of G)

\[
A \cdot A^{-1} = \delta_A \circ \rho_A((\delta_A^{-1} \circ \rho^{-1}_A)(U_1)) = (\delta_A \circ \delta_A^{-1} \circ \rho \circ \rho_A^{-1})(U_1) = 1 \circ 1(U_1) = U_1.
\]

Exercise CX.2 Proof. This is Corollary REAL.35.1. □

Exercise CX.3 Proof. The proof of Exercise OF.10(H) is valid here since that proof uses only field properties and does not involve any properties of the relation $<$. □
Chapter 3
Arc Length (ARC)

Dependencies: Euclidean Geometry and its Subgeometries (Specht)
Acronym: ARC
New terms defined: arc, closed arc, rectifiable arc, arc length, summation, function of bounded variation, total variation

This chapter defines rectifiable arcs, arc length, and functions of bounded variation. The following Chapter 4 defines the circular functions \(\sin \) and \(\cos \) and develops their properties, starting from an antiderivative of the function \(f(x) = \frac{2}{\sqrt{1+x^2}} \). Chapter 5 defines angle measure in terms of the length of arc of a unit circle, and proves several interesting results using this definition.

To understand these chapters the reader needs some background in calculus and analysis: we assume familiarity with limits, \(\epsilon - \delta \) limit proofs, continuity and uniform continuity of functions, the mean value theorem, as well as Riemann sums and integrals.

Here we will be working with \(\mathbb{R}^2 \), the Cartesian coordinate plane. In Specht Ch.21 Theorem LC.44 we summarized a proof that all the axioms in that work hold for \(\mathbb{R}^2 \). Therefore, in the present chapter and the two that follow, we are free to use all the theorems and definitions from Specht.

For an explanation of our conventions for citations of items in Specht, we refer the reader to the note Citations and references at the end of the Preface to this Supplement, and to the abbreviated Table of Contents (with acronyms) included there.

In this chapter references to items labeled ARC will be to this Supplement; all other references are to Specht.
On notation: If \(a \) and \(b \) are real numbers, we will denote \(\overrightarrow{ab} \) by \([a, b]\), \(\overrightarrow{a \mid b} \) by \([a, b]\), \(\overrightarrow{a \mid b} \) by \([a, b]\), and \(\overrightarrow{a \mid b} \) by \([a, b]\). If \(f \) is a function defined on real numbers, we may denote the set \(\{ f(x) \mid x \in [a, b]\} \) by \(f[a, b] \) instead of the more formally correct symbol \(f([a, b]) \). If \(m \) and \(n \) are integers and \(m < n \), we use the symbol \([m; n]\) to denote the set \(\{ k \mid k \text{ is an integer and } m \leq k \leq n \} \).

3.1 Definitions and theorems for arc length

Definition ARC.1 (I) A subset \(C \) of \(\mathbb{R}^2 \) is an arc iff \(a \) and \(b \) are real numbers such that \(a \leq b \), and there exists a mapping \(f \) of \(\overrightarrow{ab} = [a, b] \) into \(\mathbb{R}^2 \) such that
1. \(C = f[a, b] \),
2. \(f \) is one-to-one,
3. \(f \) is continuous on \([a, b]\), and
4. \(f^{-1} \) is continuous on \(f[a, b] \).

A mapping with these properties is a homeomorphism. If \(a = b \), the arc is the trivial arc, consisting of a single point. It is understood that an arc does not intersect itself.

A subset \(C \) of \(\mathbb{R}^2 \) is a closed arc iff \(a \) and \(b \) are real numbers such that \(a < b \), and there exists a mapping \(f \) of \(\overrightarrow{ab} = [a, b] \) into \(\mathbb{R}^2 \) such that
1. \(C = f[a, b] \),
2. the restriction of \(f \) to \([a, b]\) is one-to-one,
3. \(f \) is continuous on \([a, b]\), and
4. \(f^{-1} \) is continuous on \(f[a, b] \), and
5. \(f(a) = f(b) \).
A closed arc intersects itself only at its endpoints.

If \(C \) and \(f \) are as defined above, we will say that \(C \) is an arc generated by the function \(f \) or an arc generated by the function \(f \) over \([a, b]\), or a closed arc generated by the function \(f \) over \([a, b]\).

If \(f[a, b] \) is a closed arc generated by the function \(f \) over \([a, b]\), and if \(a < x < b \), then both \(f[a, x] \) and \(f[x, b] \) are arcs (not closed).

If we need a symbol for an arc without reference to the function which generates it, we will generally use the the symbol \(C \) rather than \(A \), since \(C \) suggests the word curve, the name popularly given to what we have defined as arc.

II) A partition of \([a, b]\) is a finite subset \(P[a, b] = \{ a = x_0, x_1, ... , x_n = b \} \) of \([a, b]\) such that
1. \(n \geq 1 \), so that \(P[a, b] \) contains at least the two elements \(a \) and \(b \), and
2. \(a = x_0 < x_1 < ... < x_n = b \), that is, for every \(k \in [1; n] \), \(t_{k-1} < t_k \).
3.1 Definitions and theorems for arc length

We will find it convenient at times to summarize the definition of partition by writing
\[\mathcal{P}[a,b] = \{ a = x_0 < x_1 < ... < x_n = b \}. \]

A partition \(\mathcal{P}[a,b] \) containing only the two elements \(a \) and \(b \) will be referred to as the trivial partition. Within a given argument, if it is clear what interval is being partitioned, we may write \(\mathcal{P}[a,b] \) simply as \(\mathcal{P} \). Note that this use of the word “partition” is related to, but not the same as its use in Specht Chapter 1, Section 1.4.

(III) If \(\mathcal{P}_1[a,b] \) and \(\mathcal{P}_2[a,b] \) are partitions of \([a,b] \), then \(\mathcal{P}_2[a,b] \) is a refinement of \(\mathcal{P}_1[a,b] \) iff \(\mathcal{P}_1[a,b] \) is a proper subset of \(\mathcal{P}_2[a,b] \).

(IV) Let \(f \) be a function with values in \(\mathbb{R} \) or \(\mathbb{R}^2 \), defined on the interval \([a,b] \), and let \(\mathcal{P} \) be a partition of \([a,b] \). The summation of \(f \) over the partition \(\mathcal{P} \) is
\[S_{\mathcal{P}}(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|. \]

If it is desired to emphasize the domain of \(f \) we may write the sum as
\[S_{\mathcal{P}[a,b]}(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|. \]
For a visualization see Figure 3.1.

(V) Let \(\mathcal{P}[a,b] = \{ a = t_0 < t_1 < ... < t_n = b \} \) be a partition of \([a,b] \). The gauge of \(\mathcal{P}[a,b] \) is the number
\[\max \{ t_k - t_{k-1} \mid k \in [1;n] \} = \max \{ |t_k - t_{k-1}| \mid k \in [1;n] \}. \]

(VI) The arc (or closed arc) \(f[a,b] \), as well as the mapping \(f \), is said to be rectifiable iff there exists a positive number \(h \) such that for every partition \(\mathcal{P}[a,b] \) of \([a,b] \), \(S_{\mathcal{P}}(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| < h. \)

(VII) If the arc (or closed arc) \(f[a,b] \) is rectifiable, then its arc length, or simply its length, is
\[\mathbb{L}(f[a,b]) = \operatorname{lub}\{S_P(f) \mid P \text{ is a partition of } [a,b]\}. \]

Remark ARC.2 (A) The arc length \(\mathbb{L}(f[a,b]) \) of a rectifiable arc \(f[a,b] \) in \(\mathbb{R}^2 \) is always defined because the set of all sums \(S_P(f) \), where \(P \) is a partition of \([a,b]\), is a set of real numbers which is bounded above, and such sets always have a least upper bound.

(B) If \(a = b \), \(f[a,b] \) is the trivial arc) the only possible sum \(S_P(f) \) is \(|f(a) - f(b)| = 0 \) so \(\mathbb{L}(f[a,b]) = 0 \). If \(a \neq b \) then since \(f \) is one-to-one, \(|f(a) - f(b)| \neq 0 \) is a sum \(S_P(f) \), and since the arc length is the least upper bound of all such sums, \(\mathbb{L}(f[a,b]) > 0 \).

(C) In Definition ARC.1(I), the definition of an arc (not closed) does not need to declare that the inverse of \(f \) is continuous; this is a consequence of a theorem from general topology which states that any one-to-one continuous function defined on a compact domain has a continuous inverse.

Theorem ARC.3 Let \(f[a,b] \) be an arc generated by the function \(f \) over \([a,b]\). If \(P_2 \) and \(P_1 \) are partitions of \([a,b]\), and \(P_2 \) is a refinement of \(P_1 \), then \(S_{P_1}(f) \leq S_{P_2}(f) \).

Proof. By Definition ARC.1(III), \(P_1 \subseteq P_2 \) and \(P_1 \neq P_2 \). Then there exists a natural number \(m \) and a sequence

\[P_1 = Q_1 \subseteq Q_2 \subseteq ... \subseteq Q_m = P_2 \]

of partitions of \([a,b]\) such that for every \(k \) with \(1 < k \leq m \), there exists a real number \(t \) such that

\[Q_k \setminus Q_{k-1} = \{t\}, \]

where \(t \) is a singleton, both \(x_{p-1} \) and \(x_p \) belong to \(Q_{k-1} \), and \(x_{p-1} < t < x_p \). That is to say, each of the partitions \(Q_k \) contains one more point than its predecessor \(Q_{k-1} \).

Thus, it suffices to show that if \(P[a,b] = \{a = x_0 < x_1 < ... < x_n = b\} \) is a partition of \([a,b]\) and \(t \) is a real number such that \(x_{k-1} < t < x_k \), the partition \(Q[a,b] = P[a,b] \cup \{t\} \) satisfies

\[S_{P}(f) \leq S_{Q}(f). \]

This follows immediately from

\[|f(x_{k-1}) - f(x_k)| \leq |f(x_{k-1}) - f(t)| + |f(t) - f(x_k)|, \]

which is true by the triangle inequality for \(\mathbb{R}^2 \). \(\Box \)
If \(C \) is a closed arc, for \(S_P(f) \neq 0 \) it is necessary for \(P \) to contain at least three points. Theorem ARC.3, however, is true in the case of a closed arc.

Theorem ARC.4 Suppose that \(a \) and \(b \) are distinct real numbers, where \(a < b \), and that \(f[a, b] \) is an arc (or closed arc) generated by the function \(f \) over \([a, b] \).

- If \([d, e]\) is a proper subsegment of \([a, b]\), that is, \(d < e \) and both \(d \) and \(e \) are members of \([a, b]\), but \([a, b] \neq [d, e]\), then if \(f[a, b] \) is rectifiable, \(f[d, e] \) is rectifiable.
- If \(c \) is a real number such that \(a < c < b \),
 \[L(f[a, b]) = L(f[a, c]) + L(f[c, b]). \]

Proof. (A) Let \(P[d, e] = \{d = x_0 < x_1 < \ldots < x_n = e\} \) be a partition of \([d, e]\).

Then \(Q[a, b] = P[d, e] \cup \{a, b\} \) is a partition of \([a, b]\);
- (Case 1:) if \(a \neq d \) and \(b \neq e \) then
 \[Q[a, b] = \{a < d = x_0 < x_1 < \ldots < x_n = e < b\}; \]
- (Case 2:) if \(a = d \) then \(Q[a, b] = \{a = d = x_0 < x_1 < \ldots < x_n = e < b\}; \)
- (Case 3:) if \(b = e \) then \(Q[a, b] = \{a < d = x_0 < x_1 < \ldots < x_n = e = b\}; \)

Since \(f[a, b] \) is rectifiable, there exists a number \(h > 0 \) such that for every partition \(R[a, b] \) of \([a, b]\), \(S_R(f) < h \); thus, in particular, \(S_Q(f) < h \).

Let \(h > S_Q(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| + |f(x_0) - f(a)| + |f(b) - f(x_n)| \)

\[\geq \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = S_P(f), \]

so that \(S_P(f) < h \). Since \(P \) was initially chosen to be an arbitrary partition of \([d, e]\), this means that \(f[d, e] \) is rectifiable.

Likewise, in Case 2,

\[h > S_Q(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| + |f(b) - f(x_n)| \geq S_P(f), \]

and in Case 3,

\[h > S_Q(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| + |f(x_0) - f(a)| \geq S_P(f), \]

so that in either case, \(f[d, e] \) is rectifiable.

(B) (I) Let \(f_1 \) and \(f_2 \) be the restrictions of \(f \) to \([a, c]\) and \([c, b]\), respectively. By part (A) the arcs \(f_1[a, c] \) and \(f_2[c, b] \) are rectifiable, and

\[L(f_1[a, c]) = \text{hub}\{S_Q(f_1) \mid Q \text{ is a partition of } [a, c]\}, \]

\[L(f_2[c, b]) = \text{hub}\{S_Q(f_2) \mid Q \text{ is a partition of } [c, b]\}. \]
Let \(P \) be any partition of \([a, b]\); then \(P \cup \{c\} \) is a partition of \([a, b]\); define \(P_1 = (P \cup \{c\}) \cap [a, c] \) and \(P_2 = (P \cup \{c\}) \cap [c, b] \); then \(P_1 \) is a partition of \([a, c]\) and \(P_2 \) is a partition of \([c, b]\).

Then, for any partition \(P \) of \([a, b]\), and using Theorem ARC.3,
\[
S_P(f) \leq S_{(P \cup \{c\})}(f) = S_{P_1}(f_1) + S_{P_2}(f_2) \leq L(f[a, c]) + L(f[c, b]).
\]
so that
\[
L(f[a, b]) = \text{lub}\{S_P(f) \mid P \text{ is a partition of } [a, b]\}
\leq L(f[a, c]) + L(f[c, b]).
\]

(II) Conversely, let \(\epsilon \) be any positive real number. By definition of \(L(f_1[a, c]) \) and \(L(f_2[c, b]) \) there exist partitions \(P_1 \) of \([a, c]\) and \(P_2 \) of \([c, b]\) such that
\[
S_{P_1}(f_1) > L(f_1[a, c]) - \frac{\epsilon}{2}, \text{ and } S_{P_2}(f_2) > L(f_2[c, b]) - \frac{\epsilon}{2}.
\]
Let \(P = P_1 \cup P_2; P \) is a partition of \([a, b]\) and
\[
S_P(f) = S_{P_1}(f_1) + S_{P_2}(f_2) > L(f_1[a, c]) - \frac{\epsilon}{2} + L(f_2[c, b]) - \frac{\epsilon}{2}
= L(f_1[a, c]) + L(f_2[c, b]) - \epsilon.
\]
Therefore if \(Q \) is any refinement of \(P \), using Theorem ARC.3,
\[
S_Q(f) \geq S_P(f) > L(f_1[a, c]) + L(f_2[c, b]) - \epsilon.
\]
Since we chose \(\epsilon \) arbitrarily, this means that
\[
L(f[a, b]) = \text{lub}\{S_P(f) \mid P \text{ is a partition of } [a, b]\}
\geq L(f_1[a, c]) + L(f_2[c, b]).
\]

(III) That \(L(f[a, b]) = L(f_1[a, c]) + L(f_2[c, b]) \) follows immediately from parts (I) and (II) above. \(\square \)

Definition ARC.5 Let \(a \) and \(b \) be distinct real numbers and let \(\varphi \) be a mapping of \([a, b] = \overrightarrow{ab}\) into \(\mathbb{R} \). \(\varphi \) is of bounded variation on \([a, b]\) iff there exists a positive number \(h \) such that for every partition \(P[a, b] \) of \([a, b]\),
\[
S_{P[a,b]}(\varphi) < h.
\]
(Here, \(S_{P[a,b]}(\varphi) \) is as defined in Definition ARC.1(IV).)

If \(\varphi \) is of bounded variation on \([a, b]\), then the total variation of \(\varphi \) on \([a, b]\) is
\[
\mathcal{V}(\varphi[a, b]) = \text{lub}\{S_{P[a,b]}(\varphi) \mid P[a, b] \text{ is a partition of } [a, b]\}.
\]
Let \(t \) be any member of \([a, b] = \overrightarrow{ab}\). Then \(\mathcal{V}(\varphi[a, t]) \) is the total variation of \(\varphi \) on \([a, t] = \overrightarrow{at}\).

Remark ARC.6 Our definition here of the total variation is the same as that in Definition ARC.1(VII) for arc length, except that now we are dealing with a real-valued function, rather than a function with values in \(\mathbb{R}^2 \).

The symbol \(\mathcal{V}(\varphi[a, b]) \) for the total variation of the function \(\varphi \) over the segment \([a, b]\) is completely analogous to the symbol \(L(f[a, b]) \) for the arc length of an arc \(f[a, b] \). The symbol \(S_P(\varphi) \) means the same thing in both
3.1 Definitions and theorems for arc length

Theorem ARC.7 Suppose that \(a\) and \(b\) are distinct real numbers, where \(a < b\), and that \(\varphi\) is a mapping of \([a, b]\) into \(\mathbb{R}\). Let \([d, e]\) be a proper subsegment of \([a, b]\), that is, \(d < e\) and both \(d\) and \(e\) are members of \([a, b]\), but \([a, b] \neq [d, e]\). Then

(A) if \(\varphi\) is of bounded variation on \([a, b]\), it is also of bounded variation on \([d, e]\); and

(B) if \(c\) is a real number such that \(a < c < b\),

\[\mathbb{V}(\varphi[a, b]) = \mathbb{V}(\varphi[a, c]) + \mathbb{V}(\varphi[c, b]).\]

We may express this last expression by saying that \(\mathbb{V}(\varphi[a, t])\) is an additive function of \(t\).

Proof. With the substitution where appropriate of \(\mathbb{V}(\varphi[a, b])\) for \(L(f[a, b])\), the proof of Theorem ARC.4 is valid word-for-word for Theorem ARC.7. \(\square\)

Theorem ARC.8 Let \(a\) and \(b\) be real numbers such that \(a < b\) and let \(\varphi\) be a mapping of \([a, b] = \overrightarrow{ab}\) into \(\mathbb{R}\) which is of bounded variation on \([a, b]\). If \(\psi\) is the mapping such that for every member \(x\) of \([a, b]\), \(\psi(x) = \mathbb{V}(\varphi[a, x])\), then

(A) \(\psi\) is nondecreasing on \([a, b]\), and

(B) If \(\varphi\) is continuous on \([a, b]\), then \(\psi\) is continuous on \([a, b]\).

Proof. (A) If \(s\) and \(t\) are members of \([a, b]\) such that \(s < t\), then \(\psi(t) = \mathbb{V}(\varphi[a, t])\) and \(\psi(s) = \mathbb{V}(\varphi[a, s])\). By Theorem ARC.7(B),

\[\mathbb{V}(\varphi[a, t]) = \mathbb{V}(\varphi[a, s]) + \mathbb{V}(\varphi[s, t]),\]

so that, rearranging,

\[\psi(t) - \psi(s) = \mathbb{V}(\varphi[a, t]) - \mathbb{V}(\varphi[a, s]) = \mathbb{V}(\varphi[s, t]) \geq 0,\]

and thus \(\psi(s) \leq \psi(t)\).

(B) We assume there exists a member \(x\) of \([a, b]\) such that \(\psi\) is not continuous at \(x\) and show that this assumption leads to a contradiction. Since \(\psi\) is nondecreasing the only discontinuity can be a jump discontinuity; either (Case 1) the limit from the right is greater than \(\psi(x)\) or (Case 2) the limit from the left is less than \(\psi(x)\).

(Case 1:) There exists a number \(d > 0\) such that (limit from the right) \(\lim_{t \to x^+} \psi(t) - \psi(x) = d\), where \(t \in [x, b] = \overrightarrow{xb}\).

(I) We begin our proof by making the following observations labeled (a), (b), and (c):
From part (A), \(\psi(t) = V(\varphi[a, t]) \) is an increasing function of \(t \), and it is additive by Theorem ARC.7(B). Thus for all \(t > x \),

\[
V(\varphi[a, t]) = V(\varphi[a, x]) + V(\varphi[x, t]).
\]

so that

\[
\lim_{t \to x} V(\varphi[x, t]) = V(\varphi[a, x]).
\]

Since \(\lim_{t \to x} V(\varphi[x, t]) = d \), there exists a number \(t_0 > x \) such that for all \(t \) with \(x < t \leq t_0 \),

\[
d \leq V(\varphi[x, t]) < \frac{6d}{5}. \quad (a)
\]

Also, since \(\varphi \) is continuous, the number \(t_0 \) may also be chosen so that for all \(t \) with \(x < t \leq t_0 \),

\[
|\varphi(t) - \varphi(t_0)| < \frac{d}{5}. \quad (b)
\]

For every partition \(P = P[x, t] \) of \([x, t] \), where \(x < t \leq t_0 \), and applying (a)

\[
S_{P,x,t}(\varphi) < V(\varphi[x, t]) < \frac{6d}{5}. \quad (c)
\]

(II) By the definition of least upper bound, we can choose \(P_0 = \{x = x_1 < x_2 < ... < x_n = t_0\} \) to be a partition of \([x, t_0] \) such that

\[
S_{P_0}(\varphi) > V(\varphi[x, t_0]) - \frac{d}{5}.
\]

Then

\[
S_{P_0}(\varphi) = |\varphi(x_1) - \varphi(x_0)| + \sum_{k=2}^{n} |\varphi(x_k) - \varphi(x_{k-1})|
\]

or, rearranging and using (I)(a) above,

\[
\sum_{k=2}^{n} |\varphi(t_k) - \varphi(t_{k-1})| > S_{P_0}(\varphi) - \frac{d}{5} > V(\varphi[x, t_0]) - \frac{d}{5} - \frac{d}{5} > d - \frac{2d}{5} = \frac{3d}{5}.
\]

(III) Now let \(P_1 = \{x = y_0 < y_1 < y_2 < ... < y_m = x_1\} \) be a partition of \([x_0, x_1] = [x, x_1] \); since \(V(\varphi[x, x_1]) \geq d \), we can choose \(P_1 \) so that

\[
S_{P_1}(\varphi) > V(\varphi[x, x_1]) - \frac{d}{5} \geq d - \frac{d}{5} = \frac{4d}{5}.
\]

Let \(Q = P_0 \cup P_1 \); then \(Q \) is a partition of \([x, t] \) and by (II),

\[
S_Q(\varphi) = S_{P_1}(\varphi) + \sum_{k=2}^{n} |\varphi(x_k) - \varphi(x_{k-1})|
\]

\[
> \frac{4d}{5} + \frac{3d}{5} = \frac{7d}{5}
\]

But by (I)(c), \(S_Q(\varphi) < \frac{6d}{5} \), so we have a contradiction.

(Case 2:) We follow the proof of Case 1. There exists a number \(d > 0 \) such that (limit from the left) \(\psi(x) - \lim_{t \to x} \psi(t) = d \), where \(t \in [a, x] \). We leave the rest of the proof to the reader as Exercise ARC.1. \(\Box \)

Remark ARC.9 (A) A real-valued function defined on a set \(E \) of real numbers is said to be uniformly continuous iff for any real number \(\epsilon > 0 \), there exists a real number \(\delta > 0 \) such that for all \(x \) and \(y \) in \(E \), if \(|x - y| < \delta \), then \(|f(x) - f(y)| < \epsilon \).
(B) A real-valued function defined on a set \(E \) of real numbers is said to be bounded iff there exists a real number \(b > 0 \), such that for every \(x \in E \), \(|f(x)| < b\).

(C) It is well known from calculus that if a real-valued function \(f \) defined on a closed interval \([a, b]\) is continuous, it is uniformly continuous; from this it is easy to see that it is also bounded; for if \(\epsilon \) and \(\delta \) are as in (A), let \(n \) be any integer such that \(n \frac{b-a}{\delta} \); then for any \(x \in [a, b], |x-a| < n\delta \) and there exists a subset \{\(a = t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_n = x \)\} such that for all \(k \in [1; n], |t_k - t_{k-1}| < \delta \), and hence for all \(k \in [1; n], |f(t_k) - f(t_{k-1})| < \epsilon \), so that

\[
|f(a) - f(x)| \leq \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| < n\epsilon.
\]

Then let \(b = |f(a)| + n\epsilon \); for all \(x \in [a, b], |f(x)| \leq b \), so that \(f \) is bounded on \([a, b]\).

Theorem ARC.10 Let \(f \) be a continuous function defined on the closed interval \([a, b]\) having values in \(\mathbb{R} \) or \(\mathbb{R}^2 \). By Remark ARC.9, \(f \) is uniformly continuous on \([a, b]\).

For each integer \(j > 0 \) let \(\{\mathcal{P}_j\} \) be a partition of \([a, b]\) and let \(g_j \) be the gauge of the partition \(\mathcal{P}_j \). Suppose that \(\lim_{j \to \infty} g_j = 0 \) and \(\lim_{g_j \to 0} \mathcal{S}_{\mathcal{P}_j}(f) \) exists and is equal to some number \(L \). Since for all \(j, \mathcal{S}_{\mathcal{P}_j}(f) > 0, L > 0 \).

(A) Then for every partition \(\mathcal{P} \) of \([a, b]\),

\[
\mathcal{S}_{\mathcal{P}}(f) \leq \lim_{g_j \to 0} \mathcal{S}_{\mathcal{P}_j}(f) = L.
\]

(B) The least upper bound

\[
\text{hub}\{\mathcal{S}_{\mathcal{P}}(f) \mid \mathcal{P} \text{ is a partition of } [a, b]\}
\]

exists, and is equal to \(L \).

Proof. (A) Suppose the contrary is true, that for some partition \(\mathcal{P} = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\} \) of \([a, b]\),

\[
\mathcal{S}_{\mathcal{P}}(f) > L.
\]

Let \(d = \mathcal{S}_{\mathcal{P}}(f) - L \), that is, \(\mathcal{S}_{\mathcal{P}}(f) = L + d \) Since \(f \) is uniformly continuous, there exists a real number \(\delta > 0 \) such that for all \(x \) and \(y \) in \([a, b]\), if \(|x-y| < \delta\), then \(|f(x) - f(y)| < \frac{d}{m}\). Let \(j_0 \) be so large that for all \(j \geq j_0 \),

1. \(g_j < \min\{x_k - x_{k-1} \mid k \in \{[1, n]\}\}; \)
2. \(g_j < \delta \); and
3. \(|\mathcal{S}_{\mathcal{P}_j} - L| < \frac{d}{4}, \) so that \(\mathcal{S}_{\mathcal{P}_j} < L + \frac{d}{4} \).

Let \(j \geq j_0 \); for each \(k \in [1; n] \), define \(\mathcal{Y}_k = \mathcal{P}_j \cap [x_{k-1}, x_k] = \{y_0 < y_1 < y_2 < \ldots < y_{m_k}\} \) by (1) above, this set is nonempty, and \(\mathcal{Y}_k \) is a partition of \([y_0^{(k)}, y_{m_k}^{(k)}]\). Then
Finally, since
\[\sum_{p=1}^{m_k} |f(y_p^{(k)}) - f(y_{p-1}^{(k)})| + |f(y_{0}^{(k)}) - f(x_{k-1})| + |f(x_k) - f(y_{m_k}^{(k)})| \]
\[= \mathcal{S}_{Y_k}(f) + |f(y_{0}^{(k)}) - f(x_{k-1})| + |f(x_k) - f(y_{m_k}^{(k)})| \]
\[\geq |f(x_k) - f(x_{k-1})| \] (\ast)
this last inequality uses the fact that \(\{x_{k-1}, y_0^{(k)}, y_1^{(k)}, y_2^{(k)}, ..., y_{m_k}^{(k)}, x_k\} \) is a refinement of the trivial partition \(\{x_{k-1}, x_k\} \) of \([x_{k-1}, x_k] \). Here it is possible, but not necessary, for \(x_{k-1} = y_0^{(k)} \) or \(y_{m_k}^{(k)} = x_k \).

Now all the terms \(|f(y_p^{(k)}) - f(y_{p-1}^{(k)})| \) (which belong to the summations \(\sum_{p=1}^{m_k} |f(y_p^{(k)}) - f(y_{p-1}^{(k)})| \) over all partitions \(Y_k \)) are also terms in the summation \(\mathcal{S}_P(f) \); therefore the sum of all these terms is less or equal to \(\mathcal{S}_P(f) \).

It follows that
\[\mathcal{S}_P(f) \geq \sum_{k=1}^{n} \mathcal{S}_{Y_k}(f), \]
and using (\ast) above,
\[\mathcal{S}_P(f) + \sum_{k=1}^{n} (|f(y_0^{(k)}) - f(x_{k-1})| + |f(x_k) - f(y_{m_k}^{(k)})|) \]
\[\geq \sum_{k=1}^{n} \mathcal{S}_{Y_k}(f) + \sum_{k=1}^{n} (|f(y_0^{(k)}) - f(x_{k-1})| + |f(x_k) - f(y_{m_k}^{(k)})|) \]
\[\geq \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \mathcal{S}_P(f). \]

Finally, since \(|y_0^{(k)} - x_{k-1}| < \delta \) and \(|x_k - y_{m_k}^{(k)}| < \delta \),
\[|f(y_0^{(k)}) - f(x_{k-1})| < \frac{4d}{3n} \text{ and } |f(x_k) - f(y_{m_k}^{(k)})| < \frac{4d}{3n}, \]
so that
\[\sum_{k=1}^{n} (|f(y_0^{(k)}) - f(x_{k-1}^{(k)})| + |f(x_k) - f(y_{m_k}^{(k)})|) < \frac{2d}{n}, \]
and
\[\mathcal{S}_P(f) + \frac{2d}{n} > \mathcal{S}_P(f), \text{ or } \mathcal{S}_P(f) > \mathcal{S}_P(f) - \frac{2d}{n}. \]
Recall from the beginning of the proof that \(\mathcal{S}_P(f) = L + d \), so that
\[\mathcal{S}_P(f) > L + d - \frac{2d}{n} = L + \frac{d}{n}. \]
But from condition (3) above,
\[\mathcal{S}_P(f) < L + \frac{d}{2}, \]
a contradiction. It follows that for every partition \(P \) of \([a, b] \), \(\mathcal{S}_P(f) \leq L \).

(B) By part (A), \(L \) is an upper bound for
\[\{ \mathcal{S}_P(f) \mid P \text{ is a partition of } [a, b] \}. \]
By definition of limit, for every \(\epsilon > 0 \), there exists a partition \(P_j \) such that
\[L - \mathcal{S}_{P_j}(f) < \epsilon. \]
Therefore the least upper bound is greater or equal to \(L \), hence equal to \(L \). \(\square \)

Theorem ARC.11 (Integral form for arc length) Let \(a \) and \(b \) be real numbers such that \(a < b \) and let \(\alpha \) and \(\beta \) be continuous real valued functions
3.1 Definitions and theorems for arc length

defined on \([a, b] = \overrightarrow{ab}\), such that the function \(f(t) = (\alpha(t), \beta(t))\) mapping \([a, b]\) to a subset \(C\) of \(\mathbb{R}^2\) is continuous. Assume further that the derivatives \(\alpha'\) and \(\beta'\) exist and are continuous on \([a, b]\), and that for every member \(t\) of \([a, b]\),

\[
(\alpha'(t))^2 + (\beta'(t))^2 > 0. \quad \text{(A)}
\]

Then

(A) \(f[a, b]\) is a rectifiable arc (or closed arc), and

(B) for every member \(x\) of \([a, b]\),

\[
\mathbb{L}(f[a, x]) = \int_a^x \sqrt{(\alpha'(u))^2 + (\beta'(u))^2} \, du.
\]

Proof. For each natural number \(j\), let \(P_j[a, x]\) be a partition of \([a, x]\) such that for each \(j\), \(P_{j+1}[a, x]\) is a refinement of \(P_j[a, x]\), and \(\lim_{j \to \infty} g_j = 0\), where \(g_j\) is the gauge of \(P_j[a, x]\). For an arbitrary \(j\), let \(P_j[a, x] = \{t_0 < t_1 < t_2 < \ldots < t_n\}\). Then \(S_{P_j}(f)\) is

\[
S_{P_j}(f) = \sum_{k=1}^n |f(t_k) - f(t_{k-1})| = \sum_{k=1}^n \sqrt{(\alpha(t_k) - \alpha(t_{k-1}))^2 + (\beta(t_k) - \beta(t_{k-1}))^2}.
\]

By the mean-value theorem for derivatives, for each \(k \in [1; n]\) there exist numbers \(s_k\) and \(u_k\) of \([t_{k-1}, t_k]\) such that \(\alpha(t_k) - \alpha(t_{k-1}) = (t_k - t_{k-1})\alpha'(s_k)\) and \(\beta(t_k) - \beta(t_{k-1}) = (t_k - t_{k-1})\beta'(u_k)\). Then

\[
S_{P_j}(f) = \sum_{k=1}^n |f(t_k) - f(t_{k-1})|
\]

\[
\leq \sum_{k=1}^n \sqrt{(\alpha'(s_k))^2 + (\beta'(s_k))^2}(t_k - t_{k-1})
\]

\[
+ \sum_{k=1}^n \sqrt{|\beta'(u_k)|^2 - (\beta'(s_k))^2}(t_k - t_{k-1}) \quad (*).
\]

Since \(\beta'\) is continuous on \([a, b]\), it is bounded on \([a, b]\). Thus there exists a positive number \(h\) such that for every \(t\) belonging to \([a, b]\), \(|\beta'(t)| \leq \frac{h}{2(b - a)}\).

Since \(\beta'\) is uniformly continuous on \([a, b]\), for every positive number \(\epsilon\) there exists a positive number \(\delta\) such that for all numbers \(s\) and \(t\) belonging to \([a, b]\), if \(|s - t| < \delta\), then \(|\beta'(s) - \beta'(t)| < \frac{\epsilon^2}{2(b - a)h^2}\).

Thus if we choose the partition \(P_j[a, x] = \{t_0 < t_1 < t_2 < \ldots < t_n\}\) so that \(g_j = \max\{|t_k - t_{k-1}| \mid k \in [1; n]\} < \delta\),

\[
\sum_{k=1}^n \sqrt{|\beta'(u_k)|^2 - (\beta'(s_k))^2}(t_k - t_{k-1})
\]

\[
= \sum_{k=1}^n \sqrt{|\beta'(u_k)^2 + \beta'(s_k)| \sqrt{|\beta'(u_k) - \beta'(s_k)|}(t_k - t_{k-1})}.
\]

For all \(k\),

\[
\sum_{k=1}^n \sqrt{|\beta'(u_k)^2 + \beta'(s_k)|} \leq \sum_{k=1}^n \sqrt{|\beta'(u_k)| + |\beta'(s_k)|}
\]

\[
\leq \sqrt{|\beta'(u_k)| + |\beta'(s_k)|} < 2\sqrt{|\beta'(t)|} \leq 2\frac{\sqrt{n}}{2(b - a)h}.
\]

Also, for all \(k\),
Therefore \(L \) one-to-one, every term of \(S \) above, the limit of the right-hand side of (*) is \(\phi \) that is, if \(P \) through the sequence where taking the limit \(\lim_{j \to \infty} \sum_{k=1}^{n} (t_k - t_{k-1}) = \frac{\epsilon}{(b-a)(b-a)} \epsilon = \epsilon.

Therefore

\[
\lim_{j \to \infty} \sum_{k=1}^{n} \sqrt{((\beta'(u_k))^2 - (\beta'(s_k))^2)(t_k - t_{k-1})} = 0,
\]

where taking the limit \(\lim \) means the same thing as taking the limit \(\lim \) through the sequence \(P_j[a,x] \) of partitions of \([a,x] \).

By definition of the integral (from calculus), and by the argument just above, the limit of the right-hand side of (*) is

\[
\int_{a}^{x} \sqrt{\left(\alpha'(u)\right)^2 + \left(\beta'(u)\right)^2} \, du + 0.
\]

For each \(j > 1 \), \(P_{j+1}[a,x] \) is a refinement of \(P_j[a,x] \), so the sequence \(S_{P_j(f)} \) (the left-hand side of (*)) is non-decreasing (with \(j \), and has an upper bound since the right-hand side of (*) has a limit. Therefore the limit \(\lim_{j \to \infty} S_{P_j(f)} \) exists; by Theorem ARC.10, this is

\[
L(f[a,x]) = \text{lub}\{S_P(f) \mid P \text{ is a partition of } [a,x]\},
\]

completing the proof. \(\square \)

Theorem ARC.12 (Arc length is a bicontinuous bijection) Let \(a \) and \(b \) be real numbers such that \(a < b \); let \(\alpha \) and \(\beta \) be continuous real-valued functions defined on \([a,b] \), such that \(f = (\alpha, \beta) \) is a one-to-one continuous function of \([a,b] \) into \(\mathbb{R}^2 \) (and thus a homeomorphism); assume also that the arc \(f[a,b] \) is rectifiable.

Let \(\varphi \) be the mapping defined on \([a,b] \) such that \(\varphi(a) = 0 \) and for every \(t \in [a,b], \varphi(t) = L(f[a,b]). \) Then

(A) \(\varphi \) is increasing, one-to-one, and continuous on \([a,b] \);
(B) \(\varphi^{-1} \) exists, is increasing, and is continuous on \(\varphi(a)\varphi(b) \); and
(C) the mapping \(\varphi \circ f^{-1} \) is a one-to-one mapping of \(f([a,b]) = C \) into \(\mathbb{R} \);

that is, if \(\varphi(s) = \varphi(t) \) then \(f(s) = f(t) \).

Proof. (A) Let \(s \) and \(t \) be members of \([a,b] \) such that \(s < t \).

(Case 1: \(a = s < t \le b \)) Let \(P[a,t] \) be a partition of \([a,t] \). Since \(f \) is one-to-one, every term of \(S_{P[a,t]}(f) \) is positive (as opposed to non-negative). Therefore \(L(f[a,t]) \) is positive and so \(\varphi(a) = 0 < \varphi(t) \).
(Case 2: $a < s$.) Let $\mathcal{P}[s, t]$ be a partition of $[s, t]$. Since every term of $S_{\mathcal{P}[s, t]}(f))$ is positive, $L(f[s, t])$ is positive. By Theorem ARC.4, $L(f[a, t]) = L(f[a, s]) + L(f[s, t])$, $\varphi(t) = \varphi(s) + L(f[s, t])$, so $\varphi(s) < \varphi(t)$. Thus φ is increasing, and is one-to-one.

To show continuity of φ, let s and t be members of $[a, b]$ such that $s < t$, let n be a natural number, and let $\mathcal{P}[a, b] = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\}$ be a partition of $[a, b]$. Then
\[
\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \leq \sum_{k=1}^{n} |\alpha(x_k) - \alpha(x_{k-1})| + \sum_{k=1}^{n} |\beta(x_k) - \beta(x_{k-1})| \\
\leq V(\alpha[s, t]) + V(\beta[s, t]).
\]
Since $\mathcal{P}[a, b]$ is an arbitrary partition of $[a, b]$, $L(f[a, t]) \leq V(\alpha[s, t]) + V(\beta[s, t])$.

Let ϵ be any positive number. By Remark ARC.9(C) there exists a positive number δ such that for all members s and t of $[a, b]$ for which $0 \leq s < t \leq b$ and $t - s < \delta$, $L(f[s, t]) < \epsilon$. Since $L(f[s, t]) = \varphi(t) - \varphi(s)$, this means that φ is continuous on $[a, b]$.

(B) By Exercise ARC.3 φ^{-1} is increasing and continuous on $\varphi(a)\varphi(b)$.
(C) Since f and φ are one-to-one, so are f^{-1} and $\varphi \circ f^{-1}$. □

3.2 Exercises for arc length

Exercise ARC.1 Complete the proof of Theorem ARC.8(B), Case 2.

Exercise ARC.2 Let a and b be distinct real numbers, α and β be mappings of $[a, b]$ into \mathbb{R} and $f = (\alpha, \beta)$, then:
(A) f is continuous on $[a, b]$ iff each of α or β is continuous on $[a, b]$.
(B) f is rectifiable iff each of α and β is of bounded variation on $[a, b]$.

Exercise ARC.3 Let a and b be real numbers such that $a < b$. If φ is a mapping of $[a, b]$ into \mathbb{R} which is increasing and is continuous on $[a, b]$, then:
(I) φ^{-1} exists.
(II) φ^{-1} is increasing on $[\varphi(a), \varphi(b)]$.
(III) φ^{-1} is continuous on $[\varphi(a), \varphi(b)]$.

Exercise ARC.4 Let φ be a mapping of \mathbb{R} into \mathbb{R} which is increasing and continuous on \mathbb{R}, then:
(I) φ^{-1} exists.
(II) φ^{-1} is increasing on \mathbb{R}.
(III) φ^{-1} is continuous on \mathbb{R}.
3.3 Selected answers for arc length

Exercise ARC.1 Proof. We follow the proof of Case 1 of Theorem ARC.8(B). There exists a number \(d > 0 \) such that (limit from the left) \(\lim_{t \to x} \psi(t) = d \), where \(t \in [a, x] \).

(I) \(\psi(t) = \mathbb{V}(\varphi[a, t]) \) is an increasing function of \(t \), and is additive. For all \(t < x \),

\[
\mathbb{V}(\varphi[a, x]) = \mathbb{V}(\varphi[a, t]) + \mathbb{V}(\varphi[t, x]).
\]

so that

\[
\mathbb{V}(\varphi[a, x]) - \mathbb{V}(\varphi[a, t]) = \mathbb{V}(\varphi[t, x]) \geq d.
\]

Since \(\lim_{t \to x} \mathbb{V}(\varphi[x, t]) = d \), there exists a number \(t_0 < x \) such that for all \(t \) with \(x > t \geq t_0 \),

\[
d \leq \mathbb{V}(\varphi[t, x]) < \frac{6d}{5}. \quad (a)
\]

Also, since \(\varphi \) is continuous, the number \(t_0 \) may also be chosen so that for all \(t \) with \(x > t \geq t_0 \),

\[
|\varphi(x) - \varphi(t)| < \frac{d}{5}. \quad (b)
\]

For every partition \(\mathcal{P} = \mathcal{P}[t, x] \) of \([t, x] \), where \(x > t \geq t_0 \), and applying (a)

\[
\mathcal{S}_{\mathcal{P}[t, x]}(\varphi) < \mathbb{V}(\varphi[t, x]) < \frac{6d}{5}. \quad (c)
\]

(II) By the definition of least upper bound, we can choose \(\mathcal{P}_0 = \{ t_0 = x_1 < x_1 < x_2 < \ldots < x_n = x \} \) to be a partition of \([t_0, x] \) such that

\[
\mathcal{S}_{\mathcal{P}_0}(\varphi) > \mathbb{V}(\varphi[0, x_n]) - \frac{4d}{5}.
\]

Then by (I)(b) above,

\[
\mathcal{S}_{\mathcal{P}_0}(\varphi) = \sum_{k=1}^{n-1} |\varphi(x_k) - \varphi(x_{k-1})| + |\varphi(x_n) - \varphi(x_{n-1})|
\]

or, rearranging and using (I)(a) above,

\[
\sum_{k=1}^{n-1} |\varphi(x_k) - \varphi(x_{k-1})| > \mathcal{S}_{\mathcal{P}_0}(\varphi) - \frac{d}{5} > \mathbb{V}(\varphi[x, t_0]) - \frac{d}{5} > d - \frac{2d}{5} = \frac{3d}{5}.
\]

(III) Now let \(\mathcal{P}_1 = \{ x_{n-1} = y_0 < y_1 < y_2 < \ldots < y_m = x \} \) be a partition of \([x_{n-1}, x_n] = [x_{n-1}, x] \) since \(\mathbb{V}(\varphi[x_{n-1}, x]) \geq d \), we can choose \(\mathcal{P}_1 \) so that

\[
\mathcal{S}_{\mathcal{P}_1}(\varphi) > \mathbb{V}(\varphi[x_{n-1}, x]) - \frac{d}{5} \geq d - \frac{d}{5} = \frac{4d}{5}.
\]

Let \(\mathcal{Q} = \mathcal{P}_0 \cup \mathcal{P}_1 \); then \(\mathcal{Q} \) is a partition of \([t, x] \) and by (II),

\[
\mathcal{S}_{\mathcal{Q}}(\varphi) = \sum_{k=1}^{n-1} |\varphi(x_k) - \varphi(x_{k-1})| + \mathcal{S}_{\mathcal{P}_1}(\varphi) > \frac{3d}{5} + \frac{4d}{5} = \frac{7d}{5}
\]

But by (I)(c), \(\mathcal{S}_{\mathcal{Q}}(\varphi) < \frac{6d}{5} \), so we have a contradiction. □
Exercise ARC.2 Proof. (A) If \(\alpha \) and \(\beta \) are each continuous on \([a, b]\), then for every member \(s \) of \([a, b]\) and for every positive number \(\epsilon \), there exists a positive number \(\delta \) such that for every member \(t \) of \([a, b] \setminus \{s\} \), if \(|t - s| < \delta \), then \(|\alpha(t) - \alpha(s)| \leq \frac{\epsilon}{2} \) and \(|\beta(t) - \beta(s)| < \frac{\epsilon}{2} \). Thus \(|f(s) - f(t)| = \sqrt{\left(\alpha(t) - \alpha(s)\right)^2 + \left(\beta(t) - \beta(s)\right)^2} \leq |\alpha(t) - \alpha(s)| + |\beta(t) - \beta(s)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \).

Hence if \(\alpha \) and \(\beta \) are continuous on \([a, b]\), then \(f \) is continuous on \([a, b]\).

Conversely, if \(f \) is continuous on \([a, b]\), then for every member \(s \) of \([a, b]\) and for every positive number \(\epsilon \), there exists a positive number \(\delta \), such that for every member \(t \) of \([a, b] \setminus \{s\} \), if \(|t - s| < \delta \), then \(f(t) - f(s) < \epsilon \).

Hence \(|\alpha(t) - \alpha(s)| \leq \sqrt{\left(\alpha(t) - \alpha(s)\right)^2 + \left(\beta(t) - \beta(s)\right)^2} = |f(t) - f(s)| < \epsilon \)

and \(|\beta(t) - \beta(s)| \leq \sqrt{\left(\alpha(t) - \alpha(s)\right)^2 + \left(\beta(t) - \beta(s)\right)^2} = |f(t) - f(s)| < \epsilon \).

Therefore \(\alpha \) is continuous on \([a, b]\) and \(\beta \) is continuous on \([a, b]\).

(B) (I) If each of \(\alpha \) or \(\beta \) is of bounded variation on \([a, b]\), then there exists an \(h > 0 \) such that for every partition \(P[a, b] = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\} \) of \([a, b] \), \(\sum_{k=1}^{n} |\alpha(t_k) - \alpha(t_{k-1})| < \frac{h}{2} \) and

\[
\sum_{k=1}^{n} |\beta(t_k) - \beta(t_{k-1})| < \frac{h}{2}.
\]

Since for each member \(k \) of \([1; n] \), \(|f(t_k) - f(t_{k-1})| = \sqrt{\left(\alpha(t_k) - \alpha(t_{k-1})\right)^2 + \left(\beta(t_k) - \beta(t_{k-1})\right)^2} \leq |\alpha(t_k) - \alpha(t_{k-1})| + |\beta(t_k) - \beta(t_{k-1})|, \) so \(\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| < h \). Thus \(f \) is rectifiable on \([a, b]\).

(II) Conversely, if \(f \) is rectifiable on \([a, b]\), then there exists an \(h > 0 \) such that for every partition \(P[a, b] = \{a = x_0 < x_1 < x_2 < \ldots < x_n = b\} \), \(\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| < h \). Since for every member \(k \) of \([1; n] \), \(|\alpha(t_k) - \alpha(t_{k-1})| \leq \sqrt{|\alpha(t_k) - \alpha(t_{k-1})|^2 + |\beta(t_k) - \beta(t_{k-1})|^2} = |f(t_k) - f(t_{k-1})| < h \) and \(|\beta(t_k) - \beta(t_{k-1})| \leq |f(t_k) - f(t_{k-1})| < h \), so both \(\alpha \) and \(\beta \) are of bounded variation on \([a, b] \). \(\square \)

Exercise ARC.3 Proof. (I) We prove that for every member \(u \) of \([a, b]\) there exists a unique number \(s \) of \([a, b]\) such that \(\varphi(s) = u \). Assume that there exist distinct members \(s \) and \(t \) of \([a, b]\) such that \(\varphi(s) = \varphi(t) = u \). We choose the notation so that \(s < t \). Since \(\varphi \) is increasing on \([a, b]\), \(\varphi(s) < \varphi(t) \), a contradiction.

(II) Let \(u \) and \(v \) be members of \(\varphi[a, b] \) such that \(u < v \). By part (I) there exist distinct and unique members \(s \) and \(t \) of \([a, b]\) such that \(\varphi(s) = u \) and
\(\varphi(t) = v \). If \(t \leq s \), then \(v \leq u \), contrary to the given fact that \(u < v \). Hence \(s < t \), that is \(\varphi^{-1}(u) < \varphi^{-1}(v) \).

(III) Let \(u \) and \(v \) be members of \(\varphi[a, b] \) such that \(\varphi(a) \leq u < v \leq \varphi(b) \). By part (I) there exist unique members \(s \) and \(t \) of \([a, b] \) such that \(\varphi(s) = u \) and \(\varphi(t) = v \). We prove that \(\varphi[s, t[=]u, v[=]\varphi(s), \varphi(t)[\).

(A) If \(q \) is any member of \([s, t[\), then \(s < q < t \) so \(\varphi(s) < \varphi(q) \). Thus \(\varphi(q) \in]\varphi(s), \varphi(t)[=]u, v[\). Since \(q \) is any member of \([s, t[\), \(\varphi(s), \varphi(t)[=]s, t[\).

Conversely, if \(w \) is any member of \(]u, v[\), then by the continuity of \(\varphi \) and the intermediate value theorem there exists a unique member \(q \) of \([s, t[\) such that \(\varphi(q) = w \). Since \(w \) is any member of \(]u, v[\), \(]u, v[\subseteq]\varphi(s), \varphi(t)[\), and therefore \(]u, v[=]\varphi(s), \varphi(t)[\).

(B) We now prove that \(\varphi^{-1} \) is continuous on \(]\varphi(a), \varphi(b)[\).

(Case 1: \(\varphi^{-1} \) is continuous at \(\varphi(a) \).) Let \(\epsilon > 0 \), and let \(s \in]a, b[\) (so that \(\varphi(s) \in]\varphi(a), \varphi(b)[\) be a number such that \(|s - a| < \epsilon \). Let \(\delta = |\varphi(a) - \varphi(s)| \); then for every \(u \in]\varphi(a), \varphi(b)[\) such that \(|\varphi(a) - u| < \delta \), \(u \in]\varphi(a), \varphi(s)[\), so \(\varphi^{-1}(u) \in]a, s[\), and hence \(|a - \varphi^{-1}(u)| < \epsilon \). Therefore \(\varphi^{-1} \) is continuous at \(\varphi(a) \).

(Case 2: \(\varphi^{-1} \) is continuous at \(\varphi(b) \).) The proof is similar to that for Case 1 with obvious substitutions of \(b \) for \(a \).

(Case 3: \(\varphi^{-1} \) is continuous at every point \(u \in]\varphi(a), \varphi(b)[\).) Since \(u \in]\varphi(a), \varphi(b)[\), \(\varphi^{-1}(u) \in]a, b[\). Let \(\epsilon > 0 \). Let \(s \) and \(t \) be points of \(]a, b[\) such that \(a < s < \varphi^{-1}(u) < t < b \) and \(|s - \varphi^{-1}(u)| < \epsilon \) and \(|t - \varphi^{-1}(u)| < \epsilon \). Then \(\varphi(a) < \varphi(s) < u < \varphi(t) < \varphi(b) \). Let \(\delta = \min(|\varphi(s) - u|, |\varphi(t) - u|) \). Then if \(|x - u| < \delta \), \(\varphi(s) < x < \varphi(t) \); so \(s < \varphi^{-1}(x) < t \), and hence \(|\varphi^{-1}(x) - \varphi^{-1}(u)| < \epsilon \). Therefore \(\varphi^{-1} \) is continuous at \(u \).

Exercise ARC.4 Proof. The proofs of parts (I) and (II) are word-for-word identical to those for Exercise ARC.3, with \(\mathbb{R} \) substituted for \([a, b[\).

(III) Let \(u \) and \(v \) be members of \(\mathbb{R} \) such that \(u < v \). By part (I) there exist unique members \(s \) and \(t \) of \(\mathbb{R} \) such that \(\varphi(s) = u \) and \(\varphi(t) = v \). The proof that \(\varphi[s, t[=]u, v[=]\varphi(s), \varphi(t)[\) is exactly as in part (III) of Exercise ARC.3.

The proof that \(\varphi^{-1} \) is continuous on \(\mathbb{R} \) is almost exactly the same as in Case 3 of part (III)(B) of Exercise ARC.3, with \(\mathbb{R} \) substituted for \([a, b[\).
Chapter 4
The Real Functions Cosine and Sine (CS)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chapter 3 of this supplement
Acronym: CS
New terms defined: sine and cosine functions, periodic function, unit circle, circumference, the function cis

In this chapter we define the circular functions sin and cos using a function \(q(x) \) which is the inverse of the function
\[
g(x) = \int_{0}^{\pi} \frac{2}{1 + x^2} \, dt.
\]
This function \(q(x) \) turns out to be the restriction of \(\tan(\frac{x}{2}) \) to the interval \(] - \pi, \pi [\).\(^1\)

This chapter depends on the previous chapter; as in that chapter, we assume familiarity with calculus and are free to use any theorems and definitions from Specht. References such as “Theorem ROT.15” cite items from Specht, and references to items with acronyms ARC and CS are to the present Supplement. Again, we refer the reader to the note Citations and references at the end of the Preface to this Supplement, and to the abbreviated Table of Contents for Specht included there.

On notation: although sin, cos, and tan are functions, where no ambiguity arises we will use traditional shorthand, writing \(\sin x \) for \(\sin(x) \), \(\cos x \) for \(\cos(x) \), and \(\tan x \) for \(\tan(x) \). We will also write \(\sin^2 x \) for \((\sin x)^2 \) and, when \(q \) is a function, \(q^2(x) \) for \((q(x))^2 \). We will use the notation \(f' \) to denote the derivative of a function \(f \).

\(^1\) This definition of the circular functions sin and cos appears to have originated with Edward Specht, the first author of Euclidean Geometry and its Subgeometries.
4.1 Basic properties of cosine and sine; periodicity

Definition CS.1 (A) For each real number x, define $f(x) = \frac{2}{1 + x^2}$.

(B) For each real number x define $g(x) = \int_0^x f(t) \, dt$.

(C) Define $g(1) = k$.

Fig. 4.1 Graphs of $f(x) = \frac{2}{1 + x^2}$ (top) and $g(x) = \int_0^x f(t) \, dt$ (bottom) for Definition CS.1.
Theorem CS.2 (A) The graph of \(g \) is symmetric with respect to the origin \(O = (0,0) \) and so is an odd function (meaning that for all \(x \), \(g(-x) = -g(x) \)).

(B) \(g \) is an increasing and continuous function on \(\mathbb{R} \).

(C) The limit \(\lim_{x \to +\infty} g(x) \) exists, and is equal to a number \(h \leq 4 \). Also the limit \(\lim_{x \to -\infty} g(x) \) exists and equals \(-h \).

(D) \(1 < g(1) = k < 2 \) and also \(g(1) = k < h \).

Proof. See Figure 4.1 above. (A) is obvious from calculus.

(B) If \(x_1 < x_2 \), then
\[
g(x_2) - g(x_1) = \int_{x_1}^{x_2} f(t) \, dt - \int_{x_1}^{x_2} f(t) \, dt = \int_{x_1}^{x_2} f(t) \, dt > 0.
\]
Thus \(g \) is increasing. To see that it is continuous, note that for all \(x \), \(0 < f(x) \leq 2 \); for any \(\epsilon > 0 \), define \(\delta = \frac{\epsilon}{2} \); then for any \(x \geq 0 \) and \(y \geq 0 \), if \(|y - x| < 2 \),
\[
|g(x) - g(y)| = \left| \int_{x_1}^{x} f(t) \, dt - \int_{y_1}^{y} f(t) \, dt \right| = \left| \int_{y_1}^{y} f(t) \, dt \right| < 2|x - y| = \epsilon.
\]

(C) For \(x \geq 0 \) define \(F(x) = \begin{cases} 2 & \text{if } 0 \leq x \leq \frac{1}{2} \\ 2x^2 & \text{if } x > \frac{1}{2} \end{cases} \). Then for \(0 \leq x \leq 1 \), \(f(x) < 2 \); for \(1 < x \), \(f(x) < 1/x^2 \). Therefore, for all \(x \geq 0 \), \(f(x) \leq F(x) \), and
\[
g(x) = \int_{0}^{x} f(t) \, dt < \int_{0}^{x} F(t) \, dt = 2 + \int_{0}^{1} 2t^2 \, dt
\]
\[
= 2 + 2(-1)(x^{-1} - 1^{-1}) = 2 - 2/x + 2 = 4 - 2/x < 4.
\]
Since \(g(x) \) is an increasing function and bounded above by 4, the limit \(h = \lim_{x \to +\infty} g(x) \) exists and is less than or equal to 4.

As we observed in part (A), the graph of \(g \) is symmetric with respect to \((0,0) \), so \(\lim_{x \to -\infty} g(x) = -h \).

(D) First note that \(f(0) = 2 \), \(f(\frac{1}{2}) = \frac{8}{3} \), and \(f(1) = 1 \). Then if \(0 \leq t \leq \frac{1}{2} \), \(\frac{8}{3} \leq f(t) \leq 2 \), and if \(\frac{1}{2} \leq t \leq 1 \), \(1 \leq f(t) \leq \frac{8}{3} \). Then
\[
\frac{8}{3} \left(\frac{1}{2} \right) = \frac{4}{3} \leq \frac{1}{2} \int_{0}^{\frac{1}{2}} f(t) \, dt \leq 2 \left(\frac{1}{2} \right) = 1 \text{ and } 1 \left(\frac{1}{2} \right) = \frac{1}{2} \leq \frac{1}{2} \int_{0}^{\frac{1}{2}} f(t) \, dt \leq \frac{8}{3} \left(\frac{1}{2} \right) = \frac{4}{3},
\]
so that \(\frac{4}{3} + \frac{1}{2} = \frac{11}{6} \leq \frac{1}{2} \int_{0}^{\frac{1}{2}} f(t) \, dt + \frac{1}{2} \int_{0}^{\frac{1}{2}} f(t) \, dt \leq 1 + \frac{4}{3} = \frac{10}{3} \).

This shows that \(1 < \frac{11}{6} \leq g(1) = k < 2 \); we have already seen that \(g \) is an increasing function, so \(1 \leq g(1) = k < h \). □
Definition CS.3 Since g is an increasing and continuous function mapping \mathbb{R} into $]-h,+h[\subseteq \mathbb{R}$, by Exercise ARC.4, g has an inverse function which is also continuous and increasing on \mathbb{R}. We denote the inverse function of g by q. The graph of q (shown below in Figure 4.2) is the reflection over the line $\mathcal{L} = \{(x_1, x_2) \mid x_1 = x_2\}$ of the graph of g.

![Graphs of $q(x) = g^{-1}(x)$, $\sin x$, and $\cos x$](image.png)

Fig. 4.2 The graphs of $q(x) = g^{-1}(x)$, $\sin x$, and $\cos x$ for Definition CS.3 and Heuristic Remark CS.4.
4.1 Basic properties of cosine and sine: periodicity

Heuristic Remark CS.4 At this stage we refer to the usual intuitive development of trigonometry, not to use as part of our development, but to give some guidance as to what definitions might be fruitful. From trigonometry, we have

\[
\tan \frac{x}{2} = \sin \frac{x}{2} = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} = \frac{\sin x}{1 + \cos x}.
\]

This becomes

\[
\frac{\sin x}{1 + \cos x} = \frac{\sin^2 x}{\sin x(1 + \cos x)} = \frac{1 - \cos^2 x}{\sin x(1 + \cos x)} = \frac{(1 - \cos x)(1 + \cos x)}{\sin x(1 + \cos x)} = \frac{1 - \cos x}{\sin x}.
\]

Solving the two equations \(\tan \frac{x}{2} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\) and \(\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x}\) for \(\cos x\) and \(\sin x\) in terms of \(\tan \frac{x}{2}\) we get \(\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\) and \(\sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\). We use the last two equations to define \(\sin x\) and \(\cos x\).

Definition/Remark CS.5

Define

\[
\begin{cases}
\cos x = \frac{1 - q^2(x)}{1 + q^2(x)} \\
\sin x = \frac{2q(x)}{1 + q^2(x)}
\end{cases}
\]

for \(-h < x < h\). We would also like to define these functions at \(x = -h\) and \(x = h\), but the definition above won’t work at these points because \(q(-h)\) and \(q(h)\) are undefined. So using the definitions of \(\sin x\) and \(\cos x\) on \([-h, h]\), we evaluate their limits at \(-h\) and \(h\) and use them to complete the definitions.

\[
\lim_{{x \to -h}} \cos x = \lim_{{x \to -h}} \frac{1 - q^2(x)}{1 + q^2(x)} = -1 \quad \text{so we define } \cos(-h) = -1,
\]

\[
\lim_{{x \to h}} \cos x = \lim_{{x \to h}} \frac{1 - q^2(x)}{1 + q^2(x)} = -1 \quad \text{so we define } \cos(h) = -1.
\]

\[
\lim_{{x \to -h}} \sin x = \lim_{{x \to -h}} \frac{2q(x)}{1 + q^2(x)} = 0 \quad \text{so we define } \sin(-h) = 0,
\]

\[
\lim_{{x \to h}} \sin x = \lim_{{x \to h}} \frac{2q(x)}{1 + q^2(x)} = 0 \quad \text{so we define } \sin(h) = 0.
\]

This completes the definitions of \(\sin x\) and \(\cos x\) on \([-h, h]\). Their graphs are shown in the lower figure on the facing page.

Theorem CS.6 *For every* \(x \in [-h, h] \)*

(a) \(\sin x\) and \(\cos x\) are continuous at \(x\),

(b) \(\cos^2 x + \sin^2 x = 1\),

(c) \(|\cos x| \leq 1\) and \(|\sin x| \leq 1\),

(d) \(\cos 0 = 1\), \(\sin 0 = 0\), \(\cos k = \cos(-k) = 0\), \(\sin k = 1\) and \(\sin(-k) = -1\),

where \(k\) *is the number whose existence is guaranteed by Theorem CS.2(D), such that* \(k > 0\) *and* \(q(k) = 1\), *and*
(E) \(\cos x > 0 \) for \(-k < x < k\) and \(\cos x < 0\) for \(-h \leq x < -k\) and \(k < x \leq h\); \(\sin x > 0\) for \(0 < x < h\) and \(\sin x < 0\) for \(-h < x < 0\).

(F) \(\cos x\) is an increasing function on \([-h, 0]\) and a decreasing function on \([0, h]\).

Proof. (A) \(\sin\) and \(\cos\) are continuous at \(0\) by Definition/Remark CS.5; they are continuous at all other points because \(q\) is a continuous function and the denominator \(1 + q^2(x)\) is never zero.

By Definition/Remark CS.5 both (B) and (C) are true for \(x = -h\) and \(x = h\). So we may assume that \(-h < x < h\).

\[
\begin{align*}
(B) & \quad \cos^2 x + \sin^2 x = \left(\frac{1 - q^2(x)}{1 + q^2(x)}\right)^2 + \left(\frac{2q(x)}{1 + q^2(x)}\right)^2 \\
& \quad = \frac{1 - 2q^2(x) + q^4 + 4q^2(x)}{(1 + q^2(x))^2} = \frac{(1 + q^2(x))^2}{(1 + q^2(x))^2} = 1.
\end{align*}
\]

(C) If \(|\cos x| > 1\), then \(\cos^2 x > 1\); if \(|\sin x| > 1\), then \(\sin^2 x > 1\); in either case \(\cos^2 x + \sin^2 x\) would be greater than 1, contradicting part (1).

(D) The results all follow from the definitions of the functions \(\sin\) and \(\cos\) in Definition/Remark CS.5. \(\cos 0 = 1\) and \(\sin 0 = 0\) because \(q(0) = 0\); \(\cos k = \cos(-k) = 0\), \(\sin k = 1\) and \(\sin(-k) = -1\) because \(q(k) = 1\) and \(q(-k) = -1\).

(E) Recall that \(q\) is a one-to-one increasing function. In Definition/Remark CS.4, the numerator of the expression for \(\cos x\) is \(1 - q^2(x)\), and the denominator is always positive. For \(-k < x < k\), \(|q(x)| < 1\) so that \(1 - q^2(x) > 0\). For \(-h < x < -k\), \(q(x) < -1\) so that \(1 - q^2(x) < 0\); and for \(k < x < h\), \(q(x) > 1\) so that \(1 - q^2(x) < 0\). Finally, \(\cos(-h) = \cos(h) = -1\) by Definition/Remark CS.4.

The numerator of the expression for \(\sin x\) is \(2q(x)\) and the denominator is always positive; for \(0 < x < h\), \(q(x) > 0\); for \(-h < x < 0\), \(q(x) < 0\).

(F) As in (E), we use the fact that \(q\) is one-to-one and increasing. As \(x\) increases from \(-h\) to \(-k\) to 0, \(\cos x = \frac{1 - q^2(x)}{1 + q^2(x)}\) increases from \(-1\) to 0 to 1; as \(x\) increases from 0 to \(k\) to \(h\), \(\cos x = \frac{1 - q^2(x)}{1 + q^2(x)}\) decreases from 1 to 0 to \(-1\).

Theorem CS.7 If \(-h < x < h\), the derivative \(q\) of \(q\) exists at \(x\) and \(q'(x) = \frac{1 - q^2(x)}{2.}

Proof. For every real number \(x\), \(g(x) = \int_0^x \frac{2}{1 + t^2} dt\). By the Fundamental Theorem of Calculus, \(g'(x) = \frac{2}{1 + x^2}\). Since \(q\) is the inverse of \(g\), and using the quotient rule for derivatives, \(q'(x) = \frac{1}{g'(q(x))} = \frac{1 + q^2(x)}{2}\).
4.1 Basic properties of cosine and sine; periodicity

Theorem CS.8 If $-h < x < h$, $\cos' x = -\sin x$ and $\sin' x = \cos x$.

Proof. (I) Since $\cos x = \frac{1-q^2(x)}{1+q^2(x)}$,

$$\cos' x = \frac{(1+q^2(x))(-2q(x))' - (1-q^2(x))2q(x)q'(x)}{(1+q^2(x))^2}$$

$$= \frac{-2q(x)(1+q^2(x)) - (1-q^2(x))2q(x)q'(x)}{(1+q^2(x))^2}$$

$$= \frac{-2q(x) - 2q'(x) - 2q(x) + 2q^3(x)q'(x)}{(1+q^2(x))^2} = \left(\frac{-4q(x)}{(1+q^2(x))^2}\right)q'(x).$$

Using Theorem CS.7,

$$\cos' x = \left(\frac{-4q(x)}{(1+q^2(x))^2}\right) \left(\frac{1+q^2(x)}{2}\right) = -\frac{2q(x)}{1+q^2(x)} = -\sin x.$$

(II) Since $\sin x = \frac{2q(x)}{1+q^2(x)}$,

$$\sin' x = \frac{(1+q^2(x))2q'(x) - (2q(x))2q(x)q'(x)}{(1+q^2(x))^2} = \frac{(1+q^2(x) - 2q^2(x))2q'(x)}{(1+q^2(x))^2}$$

$$= \left(\frac{1-q^2(x)}{(1+q^2(x))^2}\right)(2q'(x)) = \left(1-q^2(x)\right) \left(\frac{1+q^2(x)}{2}\right) = 1-q^2(x) = \cos x. \quad \Box$$

Theorem CS.9 In this theorem we confine our attention to the segment $[-h, h]$ because so far we have defined \cos and \sin only on that segment.

(I) \cos has a maximum of 1 at 0, and a minimum of -1 at $-h$ and at h. These are relative and absolute maxima (minima).

(II) \sin has a maximum of 1 at k, and a minimum of -1 at $-k$. These are relative and absolute maxima (minima).

Proof. In this proof we will use the results of Theorem CS.6 and Theorem CS.8 without further reference.

(I) Since $\cos' x = -\sin x$ and $-\sin x$ is positive for $-k < x < 0$, is negative for $0 < x < h$, and is 0 at $x = 0$, 0 is a relative maximum of \cos. We know that $\cos(0) = 1$, and since for all x, $\cos x \leq 1$, this is an absolute maximum. Since $-\sin x$ is positive for $-h < x < 0$ and is negative for $0 < x < h$, \cos has an absolute minimum of -1 at both h and $-h$.

(II) Exercise CS.1. \quad \Box

Definition CS.10 (A) Let p be a positive real number. A real valued function f is **periodic of period** p iff for every real number t, and every integer n, $f(t + np) = f(t)$.

(B) In Definition/Remark CS.5 we defined \cos and \sin on the interval $[-h, h]$. We now extend this definition by periodicity so that \cos and \sin are defined on \mathbb{R}.

For each $t \in \mathbb{R}$, there exists a unique integer n and a unique number $x \in [-h, h]$ such that $t = x + 2hn$. Define $\cos t = \cos x$ and $\sin t = \sin x$.

Theorem CS.11 For every real number \(t \), \(\cos(-t) = \cos t \) and \(\sin(-t) = -\sin t \).

Proof. (Case 1: \(-h < t < h \).) By Definition/Remark CS.5, \[
\cos(-t) = \frac{1-q^2(-t)}{1+q^2(-t)} = \frac{1-(-q)^2}{1+(-q)^2} = \frac{1-q^2}{1+q^2} = \cos t \quad \text{and} \quad \sin(-t) = \frac{2q(-t)}{1+q^2(-t)} = \frac{-2q}{1+q^2} = -\sin t.
\]

(Case 2: \(|t| = h \).) By Definition/Remark CS.5, \(\cos h = \cos(-h) = -1 \). Moreover, \(\sin(-h) = \sin h = 0 \).

(Case 3:) If \(t \) is any real number, then by Definition CS.10 there exists an integer \(n \) such that \(t = s + 2hn \), where \(-h < s < h \). So, \(\cos(-t) = \cos(-s - 2hn) = \cos(-s) = \cos s \) and \(\cos t = \cos(s + 2hn) = \cos s \), so \(\cos(-t) = \cos t \). Moreover, \(\sin(-t) = \sin(-s - 2hn) = \sin(-s) = -\sin s = -\sin(s + 2hn) = -\sin t \). \qed

Theorem CS.12 The functions \(\cos \) and \(\sin \) defined on \(\mathbb{R} \) in Definition CS.10 are

(A) continuous, and

(B) periodic of period \(2h \).

Proof. (A) Since by definition, \(\cos(-h) = \cos h = -1 \), and \(\sin(-h) = \sin h = 0 \), and both functions are continuous on \([-h, h]\), they are continuous on \(\mathbb{R} \).

(B) In this proof, let \(f \) be either \(\cos \) or \(\sin \). Let \(t \) be any real number and \(n \) any integer, and let \(x = t + 2hn \). There exist integers \(m_1 \) and \(m_2 \) such that \(y_1 = t + 2hm_1 \in]-h, h] \), and \(y_2 = x + 2hm_2 \in]-h, h] \); substituting the expression for \(x \) just above, we have \(y_2 = x + 2hm_2 = t + 2hn + 2hm_2 = t + 2h(n + m_2) \in]-h, h] \).

The difference \(y_2 - y_1 = 2h(n + m_2 - m_1) \) is an integral multiple of \(2h \), and since both \(y_1 \) and \(y_2 \) belong to \([-h, h]\), \(y_1 = y_2 \).

\[y_1 = t + 2hm_1 = x + 2hm_2. \]

By Definition CS.10,

\[f(y_1) = f(t + 2hm_1) = f(t) \quad \text{and} \quad f(y_1) = f(x + 2hm_2) = f(x), \]

so that \(f(t) = f(x) \); thus \(f \) is periodic of period \(2h \). \qed

4.2 Cosine, sine, and the unit circle

Definition CS.13 (A) Let \(r \) be any real number greater than 0; define \(C((0,0); r) \) to be the set \(\{(x_1, x_2) \mid x_1^2 + x_2^2 = r^2\} \); this set is the circle with
4.2 Cosine, sine, and the unit circle

center (0, 0) and **radius** r. We will have special interest in $C((0,0);1) = \{(x_1,x_2) \mid x_1^2 + x_2^2 = 1\}$, which is called the **unit circle**.

(B) The **inside** of a circle $C(O;r)$ is the set $\{X \mid \text{dis}(X,O) < r\}$, denoted $\text{ins}C(O;r)$; the **enclosure** of $C(O;r)$ is the set $\{X \mid \text{dis}(X,O) \leq r\}$, denoted $\text{enc}C(O;r)$. If L is a line and $O \in L$, the set $L \cap \text{enc}C(O;r)$ is a **diameter** of the circle; if $C(O;r) \cap L = \{X,Y\}$, then the number $\text{dis}(X,Y)$ is called the **diameter** of $C(O;r)$; clearly, the diameter of $C(O;r)$ is equal to $2r$.

(C) The **circumference** of a circle is its arc length. The number π is defined to be the ratio of the circumference of a circle to its diameter. Since the diameter of the unit circle is 2, its circumference is 2π.

Theorem CS.14 (A) The unit circle $C((0,0);1)$ with center (0, 0) and radius 1 is the set

$$E = \{(\cos t, \sin t) \mid -h \leq t \leq h\}.$$

(B) The unit circle is also equal to

$$\{(\cos t, \sin t) \mid -h < t \leq h\} = \{(\cos t, \sin t) \mid -h \leq t < h\} = \{(\cos t, \sin t) \mid 0 \leq t \leq 2h\} = \{(\cos t, \sin t) \mid 0 \leq t < 2h\} = \{(\cos t, \sin t) \mid -2h < t \leq 0\}.$$

Proof. (A) (I) By Definition/Remark CS.5 and Theorem CS.6(B), for all $t \in [-h,h]$, $\cos^2 t + \sin^2 t = 1$, so every member of E is a member of $C((0,0);1)$.

(II) To prove that every member of $C((0,0);1)$ is a member of $E = \{(\cos t, \sin t) \mid -h \leq t \leq h\}$ we consider eight cases.

(Case 1: $x_1 = 1$ and $x_2 = 0$.) Let $t = 0$; then $x_1 = \cos 0 = 1$ and $x_2 = \sin 0 = 0$.

(Case 2: $x_1 = -1$ and $x_2 = 0$.) Let $t = h$ or $t = -h$; then $x_1 = \cos h = -1$ and $x_2 = \sin h = 0$.

(Case 3: $x_1 = 0$ and $x_2 = 1$.) Let $t = k$; then $x_1 = \cos k = 0$ and $x_2 = \sin k = 1$.

(Case 4: $x_1 = 0$ and $x_2 = -1$.) Let $t = -k$; then $x_1 = \cos(-k) = 0$ and $x_2 = \sin(-k) = -1$.

(Case 5: $0 < x_1 < 1$ and $0 < x_2 < 1$.) Since $\cos 0 = 1$ and $\cos k = 0$, by the Intermediate Value Theorem of calculus there exists a number $t \in [0,k]$ such that $\cos t = x_1$.

The function \sin is continuous, $\sin 0 = 0$, $\sin k = 1$, and $0 < t < 1$, so that $0 < \sin t < 1$. By definition of the unit circle, $x_1^2 + x_2^2 = 1$; by Theorem CS.6(B) $\cos^2 t + \sin^2 t = 1$; since $\cos t = x_1$, $\cos^2 t + \sin^2 t = x_1^2 + \sin^2 t = 1$ so that $\sin^2 t = x_2^2$; hence $\sin t = x_2$.
(Case 6: 0 < x_1 < 1 and −1 < x_2 < 0.) By the Intermediate Value Theorem there exists a number t ∈]−k, 0[such that cos t = x_1. Since sin t ∈]−1, 0[and cos^2 t + sin^2 t = 1, by reasoning similar to that in Case 5, sin t = x_2.

(Case 7: −1 < x_1 < 0 and 0 < x_2 < 1.) By the Intermediate Value Theorem there exists a number t ∈]k, h[such that cos t = x_1. Since sin t ∈]0, 1[and cos^2 t + sin^2 t = 1, by reasoning similar to that in Case 5, sin t = x_2.

(Case 8: −1 < x_1 < 0 and −1 < x_2 < 0.) By the Intermediate Value Theorem there exists a number t ∈]−h, −k[such that cos t = x_1. Since sin t ∈]−1, 0[and cos^2 t + sin^2 t = 1, by reasoning similar to that in Case 5, sin t = x_2.

(B) In part (A), the end point (cos h, sin h) = (cos(−h), sin(−h)) is included twice; thus either of the next two formulations is correct, since they merely omit this redundancy. The other formulations are true since cos and sin are periodic of period 2h.

Theorem CS.15

(A) The arc length of the unit circle is 2h, where h is the positive real number defined in Theorem CS.2(C).

(B) Let h = \lim_{x \to +\infty} g(x), as defined in Theorem CS.2(C); then h = \pi.

We will show that k = \frac{\pi}{2} in Theorem CS.25.

Proof. (A) Since the unit circle is the set \{(cost, sint) | 0 \leq t \leq 2h\}, by Theorem ARC.11 its arc length is

\[\int_0^{2h} \sqrt{(cost')^2 + (sint')^2} dt = \int_0^{2h} \sqrt{(-sint)^2 + (cost)^2} dt = \int_0^{2h} 1 dt = 2h. \]

(B) By part (A), the arc length of the unit circle is 2h; by Definition CS.13(C), this is 2\pi.

Definition CS.16

Define cis to be the function mapping \(\mathbb{R} \) into \(\mathbb{R}^2 \), whose value at each t is cis t = (cost, sint).

Remark CS.17

(A) From Definition CS.16, cis 0 = (1, 0), cis k = (0, 1), and cis \pi = (−1, 0). The notation cis is intended to suggest the complex number cos t + i sin t. The reader should bear in mind that cis t refers to a point of the plane, specifically, a point of the unit circle, not to a number, as with cos t and sin t.

(B) We will often use the symbol cis([a, b]) to mean \{cis(x) | x ∈ [a, b] \}, and cis([a, b]) to mean \{cis(x) | x ∈ [a, b]\}. Again, as always, when we use
4.2 Cosine, sine, and the unit circle

the notation \([a, b]\) or \([a, b]\) to describe an interval of numbers, it is specifically understood that \(a < b\).

(C) On a circle, each pair of distinct points \(S = \text{cis } s\) and \(T = \text{cis } t\) defines two arcs, and we need to specify which one we are talking about. We do this by specifying the interval upon which \(\text{cis}\) is defined. If \(s < t\), we describe the arc traversed in the positive direction from \(s\) to \(t\) by \(\text{cis}[s, t]\).

The complementary arc defined by \(\text{cis } s\) and \(\text{cis } t\) (the one that “goes around the other way,” containing the point \(\text{cis } 0\)) is the set \(\{\text{cis } u | u \not\in [s, t]\}\).

If \(s \neq 0\), this arc cannot be written as the image under \(\text{cis}\) of an interval which is a subset of \([0, 2\pi]\). It could be written as \(\text{cis}[t - 2\pi, s]\) or \(\text{cis}[t, s + 2\pi]\).

(D) In the development up through Theorem CS.9, the domain of definition of \(\sin\) and \(\cos\) was the interval \([-h, h] = [\pi, \pi]\). With Definition CS.10(B), we extended this definition to the whole real line; so now it does not really make any difference what interval of length \(2\pi\) we use as a “primary” domain of definition. In Theorem CS.14(B) we made it “official” that any of the intervals \([-\pi, \pi]\), \([-\pi, \pi]\), \([-\pi, \pi]\), \([0, 2\pi]\), \([0, 2\pi]\), or \([-2\pi, 0]\) will do for this purpose, as \(\text{cis}\) maps any of these intervals onto the unit circle.

(E) Bearing in mind that where both end-points are included, the function \(\text{cis}\) is not one-to-one, the unit circle may be referred to in any of the following ways: \(\text{cis}[-\pi, \pi]\), \(\text{cis}[-\pi, \pi]\), \(\text{cis}[-\pi, \pi]\), \(\text{cis}[0, 2\pi]\), \(\text{cis}[0, 2\pi]\); or, for that matter, as \(\text{cis}[a, a + 2\pi]\), \(\text{cis}[a, a + 2\pi]\), \(\text{cis}[a, a + 2\pi]\); or \(\text{cis}[a - 2\pi, a]\), \(\text{cis}[a - 2\pi, a]\), \(\text{cis}[a - 2\pi, a]\), where \(a\) can be any real number.

Theorem CS.18 The mapping \(\text{cis}\) on the interval \([0, 2\pi]\), or on any interval \([a, a + 2\pi]\) or \([a, a + 2\pi]\), is continuous and one-to-one onto the unit circle; it is one-to-one on any interval \([a, b]\) where \(0 < b - a < 2\pi\).

Proof. Since both \(\cos\) and \(\sin\) are continuous, \(\text{cis}\) is continuous.

We show that \(\text{cis}\) is one-to-one on the interval \([-\pi, \pi]\). By Theorem CS.6(F), \(\cos\) is an increasing function on \([-\pi, 0]\) and a decreasing function on \([0, \pi]\), hence is one-to-one on both intervals. Thus if \(t > s\) and \(\text{cis } t = \text{cis } s\), not both \(t\) and \(s\) can be in \([-\pi, 0]\) and not both can be in \([0, \pi]\). Therefore \(t \in [0, \pi]\) and \(s \in [-\pi, 0]\). Then by Theorem CS.6(E), \(\sin t \geq 0\) and \(\sin s < 0\), so that \(\text{cis } t \neq \text{cis } s\), a contradiction.

If \(x \in [-\pi, 0]\), then \(\text{cis}(x + 2\pi) = \text{cis } x\) so the values taken by \(\text{cis}\) on \([0, 2\pi]\) are exactly those taken on \([-\pi, \pi]\). Hence if there are two points in \([0, 2\pi]\) where \(\text{cis}\) takes the same value, there must be two points in \([-\pi, \pi]\) where \(\text{cis}\) takes the same value, which we have shown to be impossible. Therefore \(\text{cis}\)
is one-to-one on $[0, 2\pi]$, and by periodicity cis is one-to-one on any interval $[a, a + 2\pi]$ or $[a, a + 2\pi]$.

Finally, by Theorem CS.6(B), cis maps $[0, 2\pi]$ into the unit circle; and by Theorem CS.14 cis maps $[0, 2\pi]$ onto the unit circle. \(\Box\)

Theorem CS.19 Let \(\varphi\) be the mapping of $[0, 2\pi]$ into \(\mathbb{R}\) such that for every member \(t\) of $[0, 2\pi]$, \(\varphi(t) = \mathbb{L}(\text{cis}[0, t])\), the length of the arc of the unit circle from \(\text{cis} 0 = (1, 0)\) to \(\text{cis} t\). Then \(\varphi(0) = 0\), and

(A) for every number \(t\) of $[0, 2\pi]$, \(\varphi(t) = t\);

(B) if \(s\) and \(t\) are real numbers such that $0 \leq s < t \leq 2\pi$, then the arc length \(\mathbb{L}(\text{cis}[s, t])\) is \(t - s\); and

(C) the arc length \(\mathbb{L}(\text{cis}[0, k])\) of the unit circle from \((1, 0) = \text{cis} 0\) to \((0, 1) = \text{cis} k\) is \(k\) and the arc length \(\mathbb{L}(\text{cis}[k, \pi])\) from \((0, 1) = \text{cis} k\) to \((-1, 0) = \text{cis} h\) is \(\pi - k\).

Proof. Note that for all numbers \(s\), \((\cos' s)^2 + (\sin' s)^2 = (\sin s)^2 + (\cos s)^2 = 1\).

(A) By Theorem ARC.11, for every member \(t\) of $[0, 2\pi]$,
\[
\varphi(t) = \int_0^t ((\cos' s)^2 + (\sin' s)^2) \, ds = \int_0^t 1 \, ds = t.
\]

(B) Since \(\text{cis}[s, t]\) is the image under \(\text{cis}\) of \([s, t]\), we may apply Theorem ARC.11, and the arc length \(\mathbb{L}(\text{cis}[s, t])\) is
\[
\int_s^t \sqrt{(\cos' u)^2 + (\sin' u)^2} \, du = \int_s^t 1 \, du = t - s.
\]

(C) This follows immediately from part (B). \(\Box\)

4.3 Sides of a line intersecting a circle

Remark CS.20 In the proofs of future theorems it will be important to be able to tell what points are on what sides of lines. In the next series of results, we will show explicitly that a line through two arbitrary points \(A = \text{cis} a\) and \(B = \text{cis} b\) on a unit circle (and this could easily be extended to any circle) divides it into two arcs as described in Chapter 3 Definition ARC.1, each of them being the image under the (continuous) mapping cis of an interval of real numbers.

These results will also show that, speaking informally, cis preserves “sense” on the unit circle; that is, if \(a < b\), then rotating \(A = \text{cis} a\) to \(B = \text{cis} b\) is
a rotation in the “positive direction”; or, moving \(t \) from \(a \) toward \(b \) moves \(\text{cis} \, t \) from \(A \) toward \(B \). The problem with these statements is that the terms “sense,” “positive direction,” and “toward” are not well defined mathematical terms. In more formal language, the idea can be expressed as follows: let \(a < b < a + \pi \), so that the points \(A = \text{cis} \, a \) and \(B = \text{cis} \, b \) form an angle \(\angle AOB \); then whenever \(t \in [a, b] \), \(\text{cis} \, t \) belongs to the inside of this angle; more to the point, \(\text{cis} \, t \) lies on the \(B = \text{cis} \, b \)-side of \(\overrightarrow{OA} \).

Of course, all this is intuitively obvious, inasmuch as the mapping \(\text{cis} \) is continuous. But it does seem to require proof.

To start things off right, we should point out something else that many will consider quite obvious: a line can intersect a circle in at most two points, and a line contains a point on the inside of a circle iff it intersects the circle in two points. Moreover, if a line intersects a circle \(C(O, r) \) in two points \(A \) and \(B \), the line of symmetry of \(\angle AOB \) intersects the line \(\overrightarrow{AB} \) at a point which is inside the circle. The proof of this is Exercise CS.13.

As an aid to keeping things straight, we strongly advise the reader to construct copious figures while reading the following proofs.

Theorem CS.21 Let \(A = \text{cis} \, a \), \(B = \text{cis} \, b \), and \(C = \text{cis} \, c \) be points on the unit circle \(C(O; 1) \) such that \(0 < b - a < 2\pi \). Then if \(a < c < b \), every point \(T = \text{cis} \, t \) where \(a < t < b \) belongs to the \(C \)-side of \(\overrightarrow{AB} \).

Proof. (A) Let \(x = \operatorname{lub} \{ t \mid \text{cis}[c, t] \subseteq \text{C-side of } \overrightarrow{AB} \} \). If \(\text{cis} \, x = B \) then \(\text{cis}[c, b] \subseteq \text{C-side of } \overrightarrow{AB} \). If \(\text{cis} \, x \neq B \), \(\text{cis} \, x \notin \overrightarrow{AB} \) so it is either in the \(C \)-side or the side opposite the \(C \)-side of \(\overrightarrow{AB} \). Thus there exists a number \(\epsilon \) such that for all \(Z \in \overrightarrow{AB} \), \(|\text{cis} \, x - Z| > \epsilon \). By continuity of \(\text{cis} \), there exists \(\delta > 0 \) such that if \(|x - w| < \delta \), then \(|\text{cis} \, x - \text{cis} \, w| < \epsilon \).

(Case 1:) If \(\text{cis} \, x \in \overrightarrow{AB} \), then because \(x = \operatorname{lub} \{ t \mid \text{cis}[c, t] \subseteq \text{C-side of } \overrightarrow{AB} \} \) there exists a \(w \) such that \(|w - x| < \delta \) and \(\text{cis} \, w \) is in the side of \(\overrightarrow{AB} \) opposite the \(C \)-side.

(Case 2:) If \(\text{cis} \, x \notin \text{C-side of } \overrightarrow{AB} \), then it must belong to the side opposite \(C \), and there exists a \(w \) such that \(|w - x| < \delta \) and \(\text{cis} \, w \in \text{C-side of } \overrightarrow{AB} \).

In either case \(\text{cis} \, x \) and \(\text{cis} \, w \) are on opposite sides of \(\overrightarrow{AB} \), so by Theorem PSH.11 there exists a point \(Z \in \overrightarrow{AB} \) such that \(\text{cis} \, x = \text{cis} \, Z \) and \(\epsilon < |\text{cis} \, x - Z| < |\text{cis} \, x - \text{cis} \, w| < \epsilon \), a contradiction. Therefore all the points \(\text{cis} \, t \) where \(t \in [a, b] \) belong to the \(C \)-side of \(\overrightarrow{AB} \).

(B) Let \(x = \operatorname{glb} \{ t \mid \text{cis}[t, c] \subseteq \text{C-side of } \overrightarrow{AB} \} \). If \(\text{cis} \, x = A \) then \(\text{cis}[x, c] \subseteq \text{C-side of } \overrightarrow{AB} \). If \(\text{cis} \, x \neq A \), \(\text{cis} \, x \notin \overrightarrow{AB} \) so it is either in the \(C \)-side or in the
side opposite the \(C \)-side of \(\overrightarrow{AB} \). Thus there exists a number \(\epsilon \) such that for all \(Z \in \overrightarrow{AB} \), \(|\text{cis} x - Z| > \epsilon \). By continuity of cis, there exists \(\delta > 0 \) such that if \(|x - w| < \delta \), then \(|\text{cis} x - \text{cis} w| < \epsilon \).

Substituting \(x = \text{glb} \{t \mid \text{cis}[a, c]\} \) for \(x = \text{lub} \{t \mid \text{cis}[c, t]\} \), the balance of the proof for (B) is almost word-for-word as in part (A). Therefore all the points \(\text{cis} t \) where \(t \in [a, c] \) belong to the \(C \)-side of \(\overrightarrow{AB} \), and it follows that every point of \(\text{cis}[a, b] \) is on the \(C \)-side. \(\square \)

Theorem CS.22 Let \(A = \text{cis} a \) and \(B = \text{cis} b \) be any points on the unit circle \(C(O; 1) \).

(A) Either

(I) \(A \overline{O} B \) and the notation may be chosen (and the points possibly renamed) so that \(b = a + \pi \), or

(II) \(A \overline{O} B \) is false and the notation may be chosen (and the points possibly renamed) so that \(b - a < \pi \).

(B) In either case (I) or (II), the points \(A \) and \(B \) define two arcs on the unit circle, \(\text{cis}[a, b] \) and \(\text{cis}[b, a + 2\pi] \); and

1. all the points of \(\text{cis}[a, b] \) are on the same side of \(\overrightarrow{AB} \);
2. all the points of \(\text{cis}[b, a + 2\pi] \) are on the same side of \(\overrightarrow{AB} \); and
3. every point of \(\text{cis}[a, b] \) is on the opposite side of \(\overrightarrow{AB} \) from every point of \(\text{cis}[b, a + 2\pi] \).

(C) In case (II), if \(b - a < \pi \) then \(\text{cis}[a, b] \subseteq \text{ins} \angle AOB \), and \(\text{cis}[b, a + 2\pi] \subseteq \text{out} \angle AOB \).

![Fig. 4.3 A line divides a circle into two arcs.](image)

Proof. See Figure 4.3. (Case I: \(A \overline{O} B \)) We can choose \(a \) and \(b \) (possibly renaming the points) so that \(b = a + \pi \) and therefore \(a < b \). In this case, \(\angle AOB \) is not defined. One of the arcs between \(A \) and \(B \) is \(\text{cis}[a, b] \). Also, \(A = \text{cis}(a + 2\pi) \) so that \(b < a + 2\pi \), and one of the arcs between \(A \) and \(B \) is \(\text{cis}[b, a + 2\pi] \). Let \(L \) be the perpendicular bisector of \(\overrightarrow{AB} \), \(C \) be the point
of intersection of \(\mathcal{L} \) with \(\text{cis}[a, b] \), and let \(C' \) be the point of intersection of \(\mathcal{L} \) with \(\text{cis}[b, a + 2\pi] \). These points are on opposite sides of the line \(\overrightarrow{AB} \), and by Theorem CS.21, every point of \(\text{cis}[a, b] \) is on the \(C' \)-side, and every point of \(\text{cis}[b, a + 2\pi] \) is on the \(C' \)-side of \(\overrightarrow{AB} \). This proves (B)(1), (2) and (3) for Case (I).

(Case II: \(A \overrightarrow{O} B \) is false.) Initially choose \(a \) and \(b \) so that both \(0 \leq a < 2\pi \), \(0 \leq b < 2\pi \) and \(a < b \). If \(b - a < \pi \) we leave the notation “as is”; if \(b - a > \pi \), then \(a - b < -\pi \). Let \(a' = b \) and \(b' = a + 2\pi \), so that \(\text{cis} a' \) and \(\text{cis} b' \) are the original points \(A \) and \(B \), which have now been renamed. Then \(b' - a' = a + 2\pi - b = a - b + 2\pi < -\pi + 2\pi = \pi \). Either way we have found numbers \(a \) and \(b \) such that \(\text{cis} a \) and \(\text{cis} b \) are the given points \(A \) and \(B \), \(a < b \) and \(b - a < \pi \). Moreover, \(b < a + \pi < a + 2\pi \) and \(\text{cis} a = \text{cis}(a + 2\pi) \).

This proves part (A) of the theorem, and shows that one of the arcs defined by \(A \) and \(B \) is \(\text{cis}[a, b] \), and the other is \(\text{cis}[b, a + 2\pi] \). The first of these arcs subtends the angle \(\angle AOB \).

Let \(A' \) and \(B' \) be points on the unit circle such that \(A' \overrightarrow{O} A \) and \(B' \overrightarrow{O} B \), so that \(A' = \text{cis}(a + \pi) \) and \(B' = \text{cis}(b + \pi) \). Apply Theorem CS.21 to the sides of \(\overrightarrow{AA'} \) and \(\overrightarrow{BB'} \). If \(a < t < b \), then \(a < t < b < a + \pi \) so by Theorem CS.21, \(T = \text{cis} t \) is on the \(B \)-side of \(\overrightarrow{AA'} \); also since \(b - \pi < a < t < b \), \(T \) is on the \(A \)-side of \(\overrightarrow{BB'} \); by Definition PSH.36 \(T \in \text{ins} \angle AOB \), so that \(\text{cis} a, b \subseteq \text{ins} \angle AOB \), proving the first assertion of part (C).

If \(b < t < a + 2\pi \) then either \(b < t < b + \pi \) or \(b + \pi \leq t < a + 2\pi \). Note that \(b < a + \pi < b + \pi \) and the points \(A' = \text{cis}(a + \pi) \) and \(A \) are on opposite sides of \(\overrightarrow{BB'} \); also \(a + \pi < b + \pi < a + 2\pi \) and the points \(B' = \text{cis}(b + \pi) \) and \(B \) are on opposite sides of \(\overrightarrow{AA'} \).

If \(b < t < b + \pi \), by Theorem CS.21 \(\text{cis} t \in A' = \text{cis}(a + \pi) \)-side of \(\overrightarrow{BB'} \) which is the side of \(\overrightarrow{BB'} \) opposite \(A \), hence \(\text{cis} t \in \text{out} \angle AOB \). If \(b + \pi \leq t < a + 2\pi \), by Theorem CS.21 \(\text{cis} t \in B' = \text{cis}(b + \pi) \)-side of \(\overrightarrow{AA'} \) which is the side of \(\overrightarrow{AA'} \) opposite \(B \), hence \(\text{cis} t \in \text{out} \angle AOB \); thus \(\text{cis}[b, a + 2\pi] \subseteq \text{out} \angle AOB \), proving the second assertion of (C). By Theorem PSH.41, \(\text{ins} \angle AOB \cap \text{out} \angle AOB = \emptyset \), so that \(\text{cis}[a, b] \cap \text{cis}[b, a + 2\pi] = \emptyset \).

Applying Theorem CS.21 to the sides of \(\overrightarrow{AB} \), we find that all the points of \(\text{cis}[a, b] \) are on the same side of \(\overrightarrow{AB} \), and all the points of \(\text{cis}[b, a + 2\pi] \) are on the same side of \(\overrightarrow{AB} \).

Every point of \(\mathcal{C}(O; 1) \setminus \{A, B\} \) is a member of either \(\text{cis}[a, b] \) or \(\text{cis}[b, a + 2\pi] \), and therefore to one of the sides of \(\overrightarrow{AB} \). Let \(CC' \) be the line of symmetry of \(\angle AOB \), where both \(C \) and \(C' \) are points on the circle. By Exercise CS.13
cis is one-to-one on s,t, and hence C and C' are on opposite sides of \overrightarrow{AB}.

Choose the notation so that $C \in \text{cis}[a,b]$, so that $\text{cis}[a,b] \subseteq C$-side of \overrightarrow{AB}. Since C' belongs to the side opposite C, $C' \notin \text{cis}[a,b]$, and since $\text{cis}[a,b] \cup \text{cis}[b,a] = \mathcal{C}(O;1) \setminus \{A,B\}$, $C' \in \text{cis}[b,a+2\pi]$, and hence $\text{cis}[b,a+2\pi] \subseteq C'$-side of \overrightarrow{AB}. Then every point of $\text{cis}[a,b]$ is on the same side of \overrightarrow{AB}, and every point of $\text{cis}[b,a+2\pi]$ is on the opposite side. This proves parts (B)(1),(2) and (3) for case (II). \Box

4.4 Isometry preserves arc length; $k = \frac{\pi}{2}$; summary

Lemma CS.23 (Preservation of arc length) Let φ be an isometry of the plane such that $\varphi(O) = O'$; then φ preserves distance and maps the unit circle $\mathcal{C}(O;1)$ onto the unit circle $\mathcal{C}(O';1)$. Let s and t be real numbers such that $s < t$ and $t - s < 2\pi$, so that $\text{cis}[s,t]$ is an arc on $\mathcal{C}(O;1)$ whose end points are $\text{cis}s$ and $\text{cis}t$.

(A) The set $\varphi(\text{cis}[s,t])$ is an arc on the unit circle $\mathcal{C}(O';1)$ with end points $\varphi(\text{cis}s)$ and $\varphi(\text{cis}t)$, and φ maps $\text{cis}[s,t]$ one-to-one onto $\varphi(\text{cis}[s,t])$.

(B) The arc length $L(\varphi(\text{cis}[s,t]))$ of $\varphi(\text{cis}[s,t])$ equals the arc length $L(\text{cis}[s,t])$ of $\text{cis}[s,t]$.

Proof. (A) Let $f = \varphi \circ \text{cis}$.

Specht Ch.21 Theorem LC.25.1 shows that isometries preserve distance. Since $\varphi(O) = O'$ this implies that the points $f(s) = \varphi(\text{cis}s)$ belong to the unit circle $\mathcal{C}(O';1)$. It also implies that φ is continuous, and therefore $f = \varphi \circ \text{cis}$ is continuous. By Theorem CS.18 cis is one-to-one on $[s,t]$ and since φ is an isometry, it is one-to-one, so that f is one-to-one on $[s,t]$, and its restriction to that interval has an inverse. Therefore $f = \varphi \circ \text{cis}$ is a continuous one-to-one mapping of $[s,t]$ into the unit circle $\mathcal{C}(O';1)$.

Thus s and t define not only the arc $\text{cis}[s,t]$, but also the image $\varphi(\text{cis}[s,t]) = f[s,t]$, which is an arc of the unit circle $\mathcal{C}(O';1)$.

Moreover, $\text{cis}u \in \text{cis}[s,t]$ iff $u \in [s,t]$ iff $f(u) \in \varphi(\text{cis}[s,t])$ so that the mapping φ maps $\text{cis}[s,t]$ one-to-one onto $\varphi(\text{cis}[s,t])$. This completes the proof of (A).

(B) Let $P = \{s - t = t_0 < t_1 < t_2 < ... < t_n = 0\}$ be a partition of $[s,t]$. Since φ preserves distance, for each $j \in \{1, 2, ..., n\}$,

$$|\text{cis}t_j - \text{cis}t_{j-1}| = |\varphi(\text{cis}t_j) - \varphi(\text{cis}t_{j-1})| = |f(t_j) - f(t_{j-1})|.$$
4.4 Isometry preserves arc length; \(k = \frac{\pi}{2}\); summary

The length of the arc \(\varphi(\text{cis}[s,t])\) is the least upper bound of all summations

\[
\mathcal{S}_P(f) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|
\]

which are exactly the same as the summations

\[
\mathcal{S}_P(\text{cis}) = \sum_{j=1}^{n} |\text{cis}(t_j) - \text{cis}(t_{j-1})|
\]

which define the length of the arc \(\text{cis}[s,t]\). Therefore its arc length is the same as that of its image under \(\varphi\). \(\blacksquare\)

Remark CS.24 (A) In the next theorem we remedy a deficiency of our development so far. In Theorem CS.2(C) we established the number \(h\) (which has turned out to be \(\pi\)) as the limit \(\lim_{x \to \infty} g(x)\). In part (D) of the same theorem we showed that the number \(k = g(1)\) (that is, that number \(k\) for which \(q(k) = 1\)) is between 1 and 2 and is less than \(h\). In Theorem CS.6(D) we showed that \(\cos k = 0\) and in Theorem CS.9 we showed that \(\sin k = 0\), so that \(\text{cis} k = (0, 1)\). It’s “obvious” from the picture that the arc length from \(\text{cis} 0\) to \(\text{cis} k\) is half that from \(\text{cis} 0\) to \(\text{cis} \pi\); but this hasn’t been proved. We have not established the relation between \(k\) and \(h\).

If it had been simple to calculate numerically the integral of \(f(t)\) from 0 to 1, and from 0 to “infinity,” we might have established this relation ere this, but since the standard method of calculation of these integrals involves the \(\arctan\) function, which presupposes the definition of \(\tan\) which in turn presupposes the definitions of \(\sin\) and \(\cos\), and these functions are what we are trying to define, such an argument would be circular. In parts (C) and (D) of the next theorem, we prove that indeed, \(k = h/2 = \pi/2\).

Theorem CS.25 The arc length \(L(\text{cis}[0,k]) = L(\text{cis}[k,\pi])\) so that \(\pi - k = k\) and therefore \(k = \frac{\pi}{2}\).

Proof. For all numbers \(s\), \((\cos' s)^2 + (\sin' s)^2 = (\sin s)^2 + (\cos s)^2 = 1\). Also by Theorem CS.19(B), if \(s\) and \(t\) are real numbers such that \(0 \leq s < t \leq 2\pi\), then the arc length \(L(\text{cis}[s,t])\) is \(t - s\).

Let \(L = (0,0)(0,1)\), and let \(\mathcal{R}_L\) be the mirror mapping (reflection) defined on \(\mathbb{R}^2\) in Specht Ch.21 Definition LB.16 and further developed in Remark LC.22 and subsequently. Then \(\mathcal{R}_L\) maps each point \(\text{cis} t = (\cos t, \sin t)\), where \(t \in [0,k]\), to the point \((-\cos t, \sin t) = (\cos \bar{t}, \sin \bar{t}) = \text{cis} \bar{t}\) where \(\bar{t} \in [k, \pi]\). Moreover, \(\mathcal{R}_L(\text{cis} 0) = \text{cis} \pi\); and because \(\text{cis} k \in L\), \(\mathcal{R}_L(\text{cis} k) = \text{cis} k\). Then \(\mathcal{R}_L(\text{cis}[0,k]) = (\text{cis}[\pi, k]) = (\text{cis}[k, \pi])\).

Taking arc lengths and applying Lemma CS.23, we have
\[L(\text{cis}[k, \pi]) = L(\mathcal{R}_L(\text{cis}[0, k])) = L(\text{cis}[0, k]), \]
so that \(L(\text{cis}[k, \pi]) = L(\text{cis}[0, k]). \) Then by Theorem CS.19(B), the left-hand side is \(\pi - k, \) and the right-hand side is \(k, \) so that \(k = \pi - k \) and \(k = \frac{\pi}{2}. \) \(\square \)

![Graph](image-url)

Fig. 4.4 Graphs of \(\sin x \) and \(\cos x \) for reference.

Theorem CS.26 (Summary) (A) \(\cos \) and \(\sin \) are continuous functions, periodic of period \(2\pi, \) mapping \(\mathbb{R} \) onto \([−1, 1]\); for every \(t \in \mathbb{R}, \) \(\cos t = \cos(−t) \) and \(\sin t = −\sin(−t). \)

(B) For every integer \(n, \)
\[\cos \frac{\pi}{2} = \cos(\frac{\pi}{2} + \pi n) = 0, \]
\[\cos 0 = \cos 2\pi n = 1, \quad \text{and} \]
\[\cos \pi = \cos(−\pi) = \cos(\pi + 2\pi n) = −1. \]

(C) For every integer \(n, \)
\[\sin 0 = \sin \pi n = 0, \]
\[\sin \frac{\pi}{2} = \sin(\frac{\pi}{2} + 2\pi n) = 1, \quad \text{and} \]
\[\sin(−\frac{\pi}{2}) = \sin(−\frac{\pi}{2} + 2\pi n) = −1. \]

(D) \(\text{cis} t = (\cos t, \sin t) \) is a continuous function, periodic of period \(2\pi, \) mapping \([0, 2\pi[\) onto the unit circle \(\mathbb{C}((0, 0); 1). \) The restriction of \(\text{cis} \) to any interval \([s, t]\) where \(|t − s| < 2\pi \) is one-to-one.

Proof. See Figure 4.4. In Definition CS.2(C) and (D) we defined real numbers \(h = \lim_{x \to +\infty} g(x) \) and \(k = g(1); \) in Theorem CS.15(B) we showed that \(h = \pi \) and in Theorem CS.25 that \(k = \frac{\pi}{2}. \) In this proof we will use these facts freely without further reference.

(A) By Theorem CS.12, \(\cos \) and \(\sin \) are continuous and periodic of period \(2\pi; \) by Theorem CS.9 both \(\cos \) and \(\sin \) take on both values 1 and \(−1 \) and
by the Intermediate Value Theorem for continuous functions, they both map onto \([-1, 1]\); by Theorem CS.11, \(\cos t = \cos(-t)\) and \(\sin t = -\sin(-t)\).

(B) By Theorem CS.6(D), \(\cos \frac{\pi}{2} = \cos(-\frac{\pi}{2}) = 0\); by periodicity, for all integers \(n\), \(\cos(\pi + 2\pi n) = 0\). By Theorem CS.9, \(\cos 0 = 1\) and \(\cos(\pi + 2\pi n) = -1\). By Theorem CS.6(D) and Definition/Remark CS.5, \(\sin 0 = \sin(\pi) = 0\); by periodicity, for all integers \(n\), \(\sin(\pi + 2\pi n) = 0\). By Theorem CS.9, \(\sin \frac{\pi}{2} = 1\) and \(\sin(\pi + 2\pi n) = -1\). By Theorem CS.6(D) and Definition/Remark CS.5, \(\sin 0 = \sin(\pi) = 0\); by periodicity, for all integers \(n\), \(\sin(\pi + 2\pi n) = 0\). By Theorem CS.9, \(\sin \frac{\pi}{2} = 1\) and \(\sin(\pi + 2\pi n) = -1\).

(C) By Theorem CS.6(D) and Definition/Remark CS.5, \(\sin 0 = \sin(\pi) = 0\); by periodicity, for all integers \(n\), \(\sin(\pi + 2\pi n) = 0\). By Theorem CS.9, \(\sin \frac{\pi}{2} = 1\) and \(\sin(\pi + 2\pi n) = -1\). By Theorem CS.6(D) and Definition/Remark CS.5, \(\sin 0 = \sin(\pi) = 0\); by periodicity, for all integers \(n\), \(\sin(\pi + 2\pi n) = 0\). By Theorem CS.9, \(\sin \frac{\pi}{2} = 1\) and \(\sin(\pi + 2\pi n) = -1\).

(D) This is Theorem CS.18.

\[\square\]

Corollary CS.27 Let \(u\) and \(v\) be any real numbers; then there exists a number \(t \in [0, 2\pi]\) and a real number \(r \geq 0\) such that \(u = r \cos t\) and \(v = r \sin t\), that is, \((u, v) = r \cis t\).

Proof. By Theorem CS.26(D), \(\cis\) maps \([0, 2\pi]\) onto the unit circle. Let \(\hat{u} = \frac{u}{\sqrt{u^2 + v^2}}\) and \(\hat{v} = \frac{v}{\sqrt{u^2 + v^2}}\). Then \(\hat{u}^2 + \hat{v}^2 = 1\) and since \(\cis\) maps onto the unit circle, there exists a number \(t \in [0, 2\pi]\) such that \(\hat{u} = \cos t\) and \(\hat{v} \sin t\); let \(r = \sqrt{u^2 + v^2}\); then \(u = r \cos t\) and \(v = r \sin t\). \(\square\)

4.5 Rotations; sum and difference formulas

It is intuitive to think of rotations as rigid motions about a center. In Chapter 10 of Specht, where we studied rotations, the closest we came to showing this was in Theorem ROT.22. In that theorem we showed that if \(\alpha\) is a rotation about \(O\), the angle \(\angle AO(\alpha(A))\) is congruent to every other angle \(\angle BO(\alpha(B))\).

On the coordinate plane \(\mathbb{R}^2\) we can show that a rotation, as defined in Definition ROT.1, is indeed a rigid motion. We do this by showing that a rotation that takes \(\cis 0\) into \(\cis s\) also takes \(\cis(t-s)\) into \(\cis(t-s+s) = \cis t\).

In the following, reflections are as in Chapter 21 of Specht, Definition LB.16; by Theorem LC.25 these preserve distance. Thus any reflection over a line through the center \(O\) of a unit circle maps the unit circle onto itself.
The Real Functions Cosine and Sine (CS)

Theorem CS.28 (A rotation is a rigid motion) Let \(s \) and \(t \) be distinct real numbers, \(0 < s < t < 2\pi \), and \(t - s < \pi \). There exists a unique rotation \(\rho \) of \(\mathbb{R}^2 \) about \(O = (0,0) \) such that

(A) \(\rho(\text{cis}[0,t-s]) = \text{cis}[s,t] \), \(\rho(\text{cis}0) = \text{cis} s \), \(\rho(\text{cis}(t-s)) = \text{cis} t \), and

(B) the arclength \(L(\text{cis}[0,t-s]) = L(\text{cis}[s,t]) = t - s \).

Proof. By Theorem ROT.15, there exist unique rotations \(\rho \) and \(\alpha \) about \(O \) such that \(\rho(\text{cis}0) = \text{cis} s \) and \(\alpha(\text{cis}0) = \text{cis}(t-s) \). By Theorem ROT.21,

\[
\rho(\text{cis}(t-s)) = \rho(\alpha(\text{cis}0)) = \alpha(\rho(\text{cis}0)) = \alpha(\text{cis} s)
\]

so that by Lemma CS.23, \(\rho(\text{cis}[0,t-s]) \) is the arc on the unit circle with endpoints \(\text{cis} s \) and \(\alpha(\text{cis} s) \), and the arclength \(L(\rho(\text{cis}[0,t-s])) = L(\text{cis}[0,t-s]) \); by Theorem CS.19(B), this length is \(t - s \).

The end points of \(\text{cis}[s,t] \) are \(\text{cis} s \) and \(\text{cis} t \), and \(L(\text{cis}[s,t]) = t - s \); thus if we can show that \(\alpha(\text{cis} s) \) and \(\text{cis} t \) are on the same side of the line \(\overrightarrow{O\text{cis} s} \), it will follow from Theorem ARC.12 that \(\rho(\text{cis}(t-s)) = \alpha(\text{cis} s) = \text{cis} t \), proving the theorem.

First we dispose of the case where \(\alpha \) is the point reflection \(\mathcal{R}_O \) (and see Figure 4.5); in this case \(\text{cis}(t-s) = \alpha(\text{cis}0) = \text{cis} \pi \) and \(t - s = \pi \). The line \(\overrightarrow{O(\text{cis} s)} \) intersects the unit circle at the point \(\text{cis}(s+\pi) = \text{cis}(s+t-s) = \text{cis} t \). Therefore, since \(\rho \) is an isometry and a belineation, by Theorem NEUT.15,

\[
\frac{\rho(\text{cis}(t-s))}{\rho(\text{cis}0)} = \frac{\rho(\text{cis}(t-s))\text{cis}(0)}{\rho(\text{cis}0)\text{cis}(0)} = \frac{\rho(O)}{\rho(\text{cis}0)} = \frac{\text{cis}(t-s)}{\text{cis} s}.
\]

By assumption, \(\rho(\text{cis}0) = \text{cis} s \), so that \(\rho(\text{cis}(t-s)) = \text{cis} t \), and \(\rho(\text{cis}[0,t-s]) = \text{cis}[s,t] \). Moreover, the arclengths of \(\text{cis}[0,t-s] \) and \(\rho(\text{cis}[0,t-s]) \) are both \(\pi \).

\[\text{cis} s = \rho(\text{cis}0) \]
\[\text{cis}(t-s) = \alpha(\text{cis}0) = \rho(\text{cis}0) \]
\[\text{cis} t = \alpha(\text{cis} s) = \rho(\text{cis}(t-s)) \]

Fig. 4.5 The case where \(\alpha \) is a point reflection.

Now suppose that \(\alpha \) is not the point reflection. By Exercise ROT.4(D), if \(X \) and \(Y \) are any points on the unit circle, \(\alpha(X) \in Y\text{-side of } \overrightarrow{OX} \) iff \(\alpha(Y) \) is in the side of \(\overrightarrow{OY} \) opposite \(X \). We apply this to the present situation by making the following assignments: let \(X = \text{cis}0, Y = \text{cis} s \), so that \(\alpha(X) = \text{cis} t \).
4.5 Rotations; sum and difference formulas

\(\alpha(0) = \text{cis}(t-s) \) and \(\alpha(Y) = \alpha(\text{cis}s) = \rho(\text{cis}(t-s)) \). Then there are two cases (I) and (II) as follows:

(Case I: \(\alpha(0) = \text{cis}(t-s) \in \text{cis} \cdot s \)-side of \(\overrightarrow{O} \)(\text{cis}0) and \(\alpha(\text{cis}s) \) is in the side of \(\overrightarrow{O} \)(\text{cis}s) opposite \(\text{cis}0 \).) See Figure 4.6. Note that \(s < \pi \); for if \(s > \pi \), since \(\text{cis}(t-s) \) is in the \(\text{cis}s \)-side of \(\overrightarrow{O} \)(\text{cis}0), then \(t-s > \pi \) so that \(t = s + t-s > 2\pi \) contradicting our assumption that \(t < 2\pi \).

Therefore \(s < \pi \) and \(t-s < \pi \), \(0 < s < t = t-s+s < \pi + s \), and \(\pi + s < 2\pi < 2\pi + s \). By Theorem CS.22, \(\text{cis}0 = \text{cis}2\pi \) is on the opposite side of \(\overrightarrow{O} \)(\text{cis}s) from \(\text{cis}t \); from our assumption for Case (I), \(\alpha(\text{cis}s) \) is on the side of \(\overrightarrow{O} \)(\text{cis}s) opposite \(\text{cis}0 \), so that \(\text{cis}t \) and \(\alpha(\text{cis}s) \) are on the same side of \(\overrightarrow{O} \)(\text{cis}s).

![Fig. 4.6 Illustrating Case 1.](image)

(Case II: \(\alpha(0) = \text{cis}(t-s) \) is in the side of \(\overrightarrow{O} \)(\text{cis}0) opposite \(\text{cis}s \) and \(\alpha(\text{cis}s) \in \text{cis}0 \)-side of \(\overrightarrow{O} \)(\text{cis}s).) The reader may wish to construct figures illustrating the two subcases.

(Subcase a: \(0 < t-s < \pi \) and \(\pi < s < 2\pi \).) Then \(s < 2\pi < s + \pi \) and \(s < t = s + t-s < s + \pi \). By Theorem CS.22, \(\text{cis}t \) and \(\text{cis}0 = \text{cis}2\pi \) are on the same side of \(\overrightarrow{O} \)(\text{cis}s).

(Subcase b: \(0 < s < \pi \) and \(\pi < t-s < 2\pi \).) Then \(t = t-s+s > \pi + s \) and \(t < 2\pi \) so that \(s < t < s + 2\pi \). Also, \(s < 2\pi < s + 2\pi \) so that by Theorem CS.22, \(\text{cis}t \) and \(\text{cis}0 = \text{cis}2\pi \) are on the same side of \(\overrightarrow{O} \)(\text{cis}s).

In either subcase, \(\text{cis}t \in \text{cis}0 \)-side of \(\overrightarrow{O} \)(\text{cis}s); by assumption in Case (II), \(\alpha(\text{cis}s) \) is also in this side, so \(\alpha(\text{cis}s) \) and \(\text{cis}t \) are on the same side of \(\overrightarrow{O} \)(\text{cis}s).

Thus in all cases \(\rho(\text{cis}(t-s)) = \alpha(\text{cis}s) = \text{cis}t \), proving part (A); part (B) follows immediately from Lemma CS.23.

See also Figure 4.7 and the following remark. □

Remark CS.28.1 To discern the inner structure and action of the rotation \(\rho \) in Theorem CS.28, let \(\mathcal{L} = \overrightarrow{O} \)(\text{cis}0) \) (the “horizontal axis”) and let \(\mathcal{M} \) be the line of symmetry of the angle \(\angle(\text{cis}0)O(\text{cis}s) \). Then define
\[\rho = \mathcal{R}_M \circ \mathcal{R}_L. \] This is the rotation guaranteed by Theorem ROT.15, which maps \(\text{cis}[0, t-s] \) to \(\text{cis}[t, s] \). Refer also to Figure 4.7.

\(\mathcal{R}_L \) maps \(\text{cis}[0, t-s] \) to the arc \(\text{cis}[s-t, 0] \), and then \(\mathcal{R}_M \) maps this arc to \(\text{cis}[t, s] \), carrying each point of \(\text{cis}[s-t, 0] \) along a line parallel to \(\text{cis}[0](\text{cis}s) \). If \(\text{cis}x \) is a point of \(\text{cis}[s-t, 0] \), then \(\text{cis}x(\mathcal{R}_M(\text{cis}x)) \) is a fixed line for \(\mathcal{R}_M \), and all such lines are parallel.

Corollary CS.29 Let \(\mathcal{E} \) be an arc of the unit circle having length less than \(\pi \). Then there exist numbers \(s \) and \(t \) and a rotation \(\rho \) about \(O \) such that \(0 \leq s < 2\pi \), \(0 \leq t < 2\pi \), \(\rho(\text{cis}[0, t-s]) = \mathcal{E} \), and \(\rho(\text{cis}0) \) and \(\rho(\text{cis}(t-s)) \) are endpoints of \(\mathcal{E} \).

Proof. Suppose the endpoints of \(\mathcal{E} \) are the points \(\text{cis}u \) and \(\text{cis}v \) where \(0 \leq u < 2\pi \) and \(0 \leq v < 2\pi \); we may choose the notation so that \(0 \leq u < v < 2\pi \). If \(v < u + \pi < 2\pi \), the arc can be written as \(\text{cis}[u, v] \) and the result follows from Theorem CS.28 by letting \(t = v \) and \(s = u \).

![Figure 4.7](image1.png)

Fig. 4.7 For Theorem CS.28 and Remark CS.28.1, showing action of rotation \(\rho \).

Suppose, on the other hand, that the arc is “split” by the point \(\text{cis}0 \), as in Figure 4.8. That is, \(0 \leq u < \pi \) and \(v > u + \pi \), so that the point \(\text{cis}u \) lies on one side of \(\mathcal{L} = \overrightarrow{O(1,0)} \) and \(\text{cis}v \) lies on the other side, and \(\text{cis}v \) is on the same side of the line \(\overrightarrow{O(\text{cis}u)} \) as \(\text{cis}O \). Then there are no points \(s \) and \(t \) in \([0, 2\pi] \) with \(t > s \) such that \(\mathcal{E} = \text{cis}[s, t] \). We can, however, represent the arc

![Figure 4.8](image2.png)

Fig. 4.8 Showing mapping of \(\text{cis}[0, t-s] \) to \(\mathcal{E} \).
As \(E = \text{cis}[v, u + 2\pi] \), so its arc length is \(u + 2\pi - v \). In this case we cannot directly apply Theorem CS.28, since \(u + 2\pi \notin [0, 2\pi] \).

Let \(R_O \) be the point reflection, which is a rotation about \(O \). (cf Definition ROT.1) Then \(\text{cis} v \ Mir OR \text{cis} v \) and \(\text{cis} u \ Mir OR \text{cis} u \). Let \(s = v - \pi \) and \(t = u + \pi \); then \(R_O(\text{cis} v) = \text{cis} s \) and \(R_O(\text{cis} u) = \text{cis} t \), so that \(R_O(E) = \text{cis}[s, t] \), where \(0 \leq t < 2\pi \) and \(0 \leq s < 2\pi \).

Now \(t - s = u + \pi - (v - \pi) = u - v + 2\pi < 2\pi \) since \(u - v < 0 \); since \(u - v < -\pi \), \(t - s < \pi \). By Theorem CS.28, there exists a rotation \(\sigma \) about \(O \) such that \(\sigma(\text{cis}[0, t - s]) = \text{cis}[s, t] \), \(\sigma(\text{cis} 0) = \text{cis} s \), and \(\sigma(\text{cis}(t - s)) = \text{cis} t \). Define \(\rho = R_O \circ \sigma \), which by Theorem ROT.17, is a rotation. Then \(\rho(\text{cis} 0) = R_O(\sigma(\text{cis} 0)) = R_O(\text{cis} s) = \text{cis} v \), \(\rho(\text{cis} t - s) = R_O(\sigma(\text{cis}(t - s))) = R_O(\text{cis} t) = \text{cis} u \), and \(\rho(\text{cis}[0, t - s]) = R_O(\sigma(\text{cis}[0, t - s])) = R_O(\text{cis}[s, t]) = E \). We have used the fact that \(R_O \) is its own inverse. \(\square \)

Corollary CS.30 Let \(\text{cis}[s, t] \) and \(\text{cis}[u, v] \) be arcs of the unit circle \(C(O; 1) \), and that \(\pi > t - s = v - u > 0 \), so that the lengths of both arcs are the same; then there exists a rotation \(\rho \) of the unit circle such that \(\rho(\text{cis}[s, t]) = \text{cis}[u, v] \).

Proof. By Corollary CS.29 there exist rotations \(\sigma \) and \(\mu \) such that \(\text{cis}[s, t] = \sigma(\text{cis}[0, t - s]) \) and \(\text{cis}[u, v] = \mu(\text{cis}[0, v - u]) = \mu(\text{cis}[0, t - s]) \). Define \(\rho = \mu \circ \sigma^{-1} \), which is a rotation by Theorem ROT.17. Then \(\rho(\text{cis}[s, t]) = \mu(\sigma^{-1}(\text{cis}[s, t])) = \mu(\text{cis}[0, t - s]) = \text{cis}[u, v] \). \(\square \)

Theorem CS.31 If \(s \) and \(t \) are distinct real numbers \(0 \leq s < 2\pi \) and \(0 \leq t < 2\pi \) then \(\cos(t - s) = \cos t \cos s + \sin t \sin s \).

Proof. (Case 1: \(t > s \)) By Theorem CS.28, there exists a rotation such that \(\rho(\text{cis} 0) = \text{cis} s \) and \(\rho(\text{cis}(t - s)) = \text{cis} t \). Since \(\rho \) is an isometry, thus preserving distance,

\[
\text{dis}(\text{cis} 0, \text{cis}(t - s)) = \text{dis}(\text{cis} s, \text{cis} t).
\]

Using the definition of distance and equating the squares of both sides of this, we have

\[
(\cos 0 - \cos(t - s))^2 + (\sin 0 - \sin(t - s))^2 = (1 - \cos(t - s))^2 + (\sin(t - s))^2 = (\cos s - \cos t)^2 + (\sin s - \sin t)^2
\]

which reduces to

\[
1 - 2 \cos(t - s) + \cos^2(t - s) + \sin^2(t - s) = \cos^2 s + \sin^2 s + \cos^2 t + \sin^2 t - 2 \cos s \cos t - 2 \sin s \sin t,
\]

as \(E = \text{cis}[v, u + 2\pi] \), so its arc length is \(u + 2\pi - v \). In this case we cannot directly apply Theorem CS.28, since \(u + 2\pi \notin [0, 2\pi] \).
that is,
\[1 - 2 \cos(t - s) + 1 = 1 + 1 - 2 \cos s \cos t - 2 \sin s \sin t.\]
Hence \(\cos(t - s) = \cos s \cos t + \sin s \sin t.\)

(Case 2: \(t < s\).) The proof is Exercise CS.2. □

Theorem CS.32 (Composite argument formulae for cosine and sine.) For all real numbers \(s\) and \(t\):

1. \(\cos(s - t) = \cos s \cos t + \sin s \sin t.\)
2. \(\sin(s - t) = \sin s \cos t - \cos s \sin t.\)
3. \(\cos(s + t) = \cos s \cos t - \sin s \sin t.\)
4. \(\sin(s + t) = \sin s \cos t + \cos s \sin t.\)

Proof. (I) (Case 1: \(s = t \neq 0\).) \(\cos(s - t) = \cos 0 = 1,\) and
\[
\cos s \cos t + \sin s \sin t = \cos^2 s + \sin^2 s = 1.
\]
(Case 2: \(s = 0\).) Then \(\cos(t - s) = \cos t,\) and \(\cos s \cos t + \sin s \sin t = \cos t + 0.\)
(Case 3: \(t = 0\).) Then \(\cos(t - s) = \cos s = \cos s,\) and
\[
\cos s \cos t + \sin s \sin t = \cos s + 0.
\]
(Case 4: \(0 < t < 2\pi\) and \(0 < s < 2\pi\) and \(s \neq t.\)) The proof is Theorem CS.24.
(Case 5: \(s\) and \(t\) are real numbers such that \(s \neq t.\)) Then by periodicity (cf Definition CS.10) there exist integers \(j\) and \(k\) and real numbers \(u\) and \(v\) such that \(0 < u < 2\pi, 0 < v < 2\pi, u \neq v\) and \(s = 2j\pi + u\) and \(t = 2k\pi + v.\)

By Theorem CS.31
\[
\cos(s - t) = \cos(u - v) = \cos u \cos v + \sin u \sin v
= \cos(2j\pi + u) \cos(2k\pi + v) + \sin(2j\pi + u) \sin(2k\pi + v)
= \cos s \cos t + \sin s \sin t.
\]
II) For every real number \(u, \cos(\frac{\pi}{2} - u) = \cos(\frac{\pi}{2}) \cos u + \sin(\frac{\pi}{2}) \sin u;\) also, for every real number \(v, \sin(\frac{\pi}{2} - v) = \cos v;\) if we let \(u = \frac{\pi}{2} - v\) then \(v = \frac{\pi}{2} - u\)
so that for every real number \(u, \sin u = \cos v = \cos(\frac{\pi}{2} - u).\) Hence for all real numbers \(s\) and \(t,\)
\[
\sin(s - t) = \cos(\frac{\pi}{2} - (s - t)) = \cos((\frac{\pi}{2} - s) + t)
= \cos(\frac{\pi}{2} - s) \cos t - \sin(\frac{\pi}{2} - s) \sin t = \sin s \cos t - \cos s \sin t.
\]
III) Exercise CS.2.

IV) By part (II), for all real numbers \(s\) and \(t, \sin(s + t) = \sin(s - (-t)) = \sin s \cos t - \cos s \sin(-t) = \sin s \cos t + \cos s \sin t.\) □

Theorem CS.33 (Traditional angle definition of \(\sin\) and \(\cos\)) Assume that:
(1) t is a real number such that $0 \leq t < 2\pi$;
(2) φ is the mapping, applied to $C((0,0);r)$, whose existence is established by Theorem ARC.12;
(3) Q is the point $\text{cis} \, t$;
(4) $P = (x_1, x_2)$ is a member of $OQ \setminus \{Q\}$; and
(5) $r > 0$, and $r^2 = x_1^2 + x_2^2$.

Then $\cos t = \frac{x_1}{r}$ and $\sin t = \frac{x_2}{r}$.

Proof. (Case 1: $t = 0$.) $\cos 0 = \frac{1}{1} = 1$. $\sin 0 = \frac{0}{1} = 0$.
(Case 2: $0 < t < \frac{\pi}{2}$.) Let $R = \text{ftpr}(Q, \overrightarrow{OQ})$ and $S = \text{ftpr}(P, \overrightarrow{OU})$. Then $\triangle OPQ \sim \triangle OSP$. Hence $\cos(t) = \frac{x_1}{r}$ and $\sin t = \frac{x_2}{r}$.
(Case 3: $t = \frac{\pi}{2}$.) Exercise CS.3.
(Case 4: $\frac{\pi}{2} < t < \frac{3\pi}{2}$.) Exercise CS.4.
(Case 5: $t = \frac{3\pi}{2}$.) Exercise CS.5.
(Case 6: $\frac{3\pi}{2} < t < 2\pi$.) Exercise CS.6. □

Remark CS.34 The next two theorems give analytic form to rotations we studied in Theorems CS.28 and CS.29. In particular, Theorem CS.36 shows that the line of symmetry of the angle $\angle (\text{cis} \, 0)O(\text{cis} \, s)$, referred to early in the proof of Theorem CS.28, is in fact $\overrightarrow{O(\text{cis} \, \frac{\pi}{2})}$, as we might reasonably expect.

Theorem CS.35 Let s be a real number such that $0 \leq s < \pi$, and let $\mathcal{M} = \overrightarrow{O(\text{cis} \, s)}$ be the line from the origin through the point $\text{cis} \, s$ (which belongs to the unit circle $C(O;1)$). Let $\mathcal{R}_\mathcal{M}$ be the mapping (Φ) defined over \mathcal{M} in Definition LB.16. Then for every point (x_1, x_2) of the plane \mathbb{R}^2,

$$\mathcal{R}_\mathcal{M}(x_1, x_2) = \left(\frac{\cos 2s x_1 + (\sin 2s) x_2}{\sin 2s x_1 - (\cos 2s) x_2} \right).$$

Proof. The equation of the line \mathcal{M} is $ax_1 + bx_2 + c = 0$ where $a = \sin s$, $b = -\cos s$, and $c = 0$, as can be verified by substituting $x_1 = \cos s$ and $x_2 = \sin s$ into $(\sin s)x_1 - (\cos s)x_2$. From Definition LB.16, for any point $(x_1, x_2) \in \mathbb{R}^2$,

$$\mathcal{R}_\mathcal{M}(x_1, x_2) = \left(\frac{b^2 - a^2 x_1 - 2ab x_2 - 2ac}{a^2 + b^2 - 2ab x_1 + (a^2 - b^2)x_2 - 2bc} \right);$$

since $a^2 + b^2 = \cos^2 s + \sin^2 s = 1$ and $c = 0$, this becomes

$$\mathcal{R}_\mathcal{L}(x_1, x_2) = \left(\frac{(b^2 - a^2)x_1 - 2ab x_2}{-2ab x_1 + (a^2 - b^2)x_2} \right)$$

$$= \left(\frac{(\cos^2 s - \sin^2 s)x_1 + 2(\sin s \cos s)x_2}{2(\sin s \cos s)x_1 + (\sin^2 s - \cos^2 s)x_2} \right).$$
By Theorem CS.32(III), \(\cos 2s = \cos^2 s - \sin^2 s \), and by Theorem CS.32(IV),
\(\sin 2s = 2 \sin s \cos s \), so that the last expression becomes

\[
\mathcal{R}_M(x_1, x_2) = \begin{pmatrix}
\cos 2s x_1 + (\sin 2s) x_2 \\
(\sin 2s) x_1 - (\cos 2s) x_2
\end{pmatrix}.
\]

\[\Box\]

Theorem CS.36 Let \(s \) be a real number such that \(0 \leq s < 2\pi \), and let \(M = O \overset{\rightarrow}{\to}\text{cis} \frac{s}{2} \) be the line from the origin through the point \(\text{cis} \frac{s}{2} = (\cos \frac{s}{2}, \sin \frac{s}{2}) \), which point belongs to the unit circle \(C((0,0);1) \). Let \(L = (0,0)\overset{\rightarrow}{\to}(1,0) \). Let \(\mathcal{R}_M \) and \(\mathcal{R}_L \) be the reflections \((\Phi) \) defined in Definition LB.16 over the lines \(M \) and \(L \) respectively, and let \(\rho = \mathcal{R}_M \circ \mathcal{R}_L \). By Definition ROT.1, \(\rho \) is a rotation.

(A) **For every point** \((x_1, x_2) \in \mathbb{R}^2\),

\[
\rho(x_1, x_2) = \mathcal{R}_M(\mathcal{R}_L(x_1, x_2)) = \begin{pmatrix}
\cos s x_1 - (\sin s) x_2 \\
(\sin s) x_1 + (\cos s) x_2
\end{pmatrix}.
\]

(B) \(\rho \) is the unique rotation of \(\mathbb{R}^2 \) about \(O = (0,0) \) such that \(\rho(1,0) = \rho(\text{cis}0) = (\cos s, \sin s) = \text{cis} s \).

(C) The line \(M \) is the line of symmetry of \(\angle \text{cis} 0 \text{O} \text{cis} s \). \[\Box\]

Remark CS.37 (A) Recall from Specht Ch.3 Definition CAP.6 that a **translation** is a collineation \(\alpha \) of the plane which has no fixed point, and such that for every line \(L \) either \(\alpha(L) \parallel L \) or \(\alpha(L) = L \).
Theorem CS.38 A mapping \(\alpha \) of \(\mathbb{R}^2 \) into itself is a translation iff for some point \((p_1, p_2) \neq (0, 0) \) of \(\mathbb{R}^2 \), and every point \((x_1, x_2) \in \mathbb{R}^2 \), \(\alpha(x_1, x_2) = (x_1 + p_1, x_2 + p_2) \).

Proof. (A) Suppose that there exists a point \((p_1, p_2) \) such that for every point \((x_1, x_2) \in \mathbb{R}^2 \),

\[
\alpha(x_1, x_2) = (y_1, y_2) = (x_1 + p_1, x_2 + p_2).
\]

Let \(\mathcal{L} \) be a line having the equation \(ax_1 + bx_2 + c = 0 \), and let \(d = c - ap_1 - bp_2 \).

Then \((x_1, x_2) \in \mathcal{L} \) iff

\[
ay_1 + by_2 + d = ax_1 + ap_1 + bx_2 + bp_2 + c - ap_1 - bp_2
\]

which is true iff \(ay_1 + by_2 + d = 0 \), that is, to say, \(\alpha(x_1, x_2) = (y_1, y_2) \) is a member of the line \(ax_1 + bx_2 + d = 0 \). This is true iff the line \(\mathcal{L} \) is either parallel to, or equal to \(\alpha(\mathcal{L}) \). Therefore \(\alpha \) is a a translation.

(B) Conversely, suppose \(\alpha \) is a translation. Then for every line \(\mathcal{L} \) with equation \(ax_1 + bx_2 + c = 0 \), \(\alpha(\mathcal{L}) \) is a line parallel or equal to \(\mathcal{L} \), that is, for some \(d \), \(\alpha(\mathcal{L}) \) has equation \(ay_1 + by_2 + d = 0 \).

If \(c = d \) then \(\alpha(\mathcal{L}) = \mathcal{L} \) and we may let \(p_1 = p_2 = 0 \).

If \(c \neq d \), then either \(a \neq 0 \) or \(b \neq 0 \) (or both). If \(a \neq 0 \), let \(p_1 = \frac{-d+c-b}{a} \) and \(p_2 = 1 \). Then \((x_1, x_2) \in \mathcal{L} \) iff \(ax_1 + bx_2 + c = 0 \) which is true iff

\[
ay_1 + by_2 + d = a(x_1 + \frac{-d+c-b}{a}) + b(x_2 + 1) + d
\]

\(= ax_1 + bx_2 - d + c - b + b + d = ax_1 + bx_2 + c = 0 \).

Thus \((x_1, x_2) \) is on the line \(ax_1 + bx_2 + c = 0 \) iff \(\alpha(x_1, x_2) = (y_1, y_2) = (x_1 + p_1, x_2 + p_2) \) is on the line \(ay_1 + by_2 + d = 0 \).

The case where \(b \neq 0 \) we leave to the reader as Exercise CS.7. \(\square \)

Theorem CS.39 Let \(\overline{AB} \) be a closed ray on \(\mathbb{R}^2 \), and let \(\alpha \) be a translation; then \(\alpha(\overline{AB}) \) is the ray \(\alpha(A)\alpha(B) \).

Proof. By Specht Ch.21 Definition LA.1(3D), \(\overline{AB} = \{ A + t(B - A) \mid t \geq 0 \} \). By Theorem CS.38, there exists a point \(P \) such that for all \(X \), \(\alpha(X) = X + P \).

Then \(Y \in \alpha(\overline{AB}) \) iff for some \(X \in \overline{AB} \),

\[
Y = \alpha(X) = X + P = A + P + t((B + P) - (A + P))
\]

\[= \alpha(X) + t(\alpha(B) - \alpha(A)) \]

which is true iff \(Y \in \alpha(A)\alpha(B) \). \(\square \)

Remark CS.40 (A) Since an angle is the union of two non-opposite rays, (cf Specht Ch.5 Definition PSH.29), if \(\alpha \) is a translation and if \(\angle BAC \) is an angle with corner \(A \), then \(\alpha(\angle BAC) = \angle \alpha(B)\alpha(A)\alpha(C) \).
The next theorem proves this for \(\mathbb{R}^2 \) parallel lines in a Euclidean plane, the mapping \(\mathcal{R}_{\mathcal{L}_2} \circ \mathcal{R}_{\mathcal{L}_1} \) is a translation. The next theorem proves this for \(\mathbb{R}^2 \), using direct computation.

Theorem CS.41 Let \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) be parallel lines on \(\mathbb{R}^2 \). Then \(\mathcal{R}_{\mathcal{L}_2} \circ \mathcal{R}_{\mathcal{L}_1} \) is a translation.

Proof. By Theorem LB.13 there exist real numbers \(a, b, c_1 \) and \(c_2 \) such that \(c_1 \neq c_2 \),

\[
\mathcal{L}_1 = \{(x_1, x_2) \mid (x_1, x_2) \in \mathbb{R}^2 \text{ and } ax_1 + bx_2 + c_1 = 0\} \quad \text{and} \quad \mathcal{L}_2 = \{(x_1, x_2) \mid (x_1, x_2) \in \mathbb{R}^2 \text{ and } ax_1 + bx_2 + c_2 = 0\}.
\]

Let \((x_1, x_2) \) be any member of \(\mathbb{R}^2 \); by Definition LB.16,

\[
\begin{pmatrix}
(y_1) \\
(y_2)
\end{pmatrix} = \mathcal{R}_{\mathcal{L}_1} \begin{pmatrix}
(x_1) \\
(x_2)
\end{pmatrix} = \begin{pmatrix}
\frac{b^2 - a^2}{a^2 + b^2} x_1 - \frac{2ab}{a^2 + b^2} x_2 + \frac{2ac}{a^2 + b^2} \\
-\frac{2ab}{a^2 + b^2} x_1 + \frac{a^2 - b^2}{a^2 + b^2} x_2 - \frac{2bc}{a^2 + b^2}
\end{pmatrix},
\]

so that

\[
\mathcal{R}_{\mathcal{L}_2} \left(\mathcal{R}_{\mathcal{L}_1} \begin{pmatrix}
(x_1) \\
(x_2)
\end{pmatrix} \right) = \begin{pmatrix}
\frac{b^2 - a^2}{a^2 + b^2} x_1 - \frac{2ab}{a^2 + b^2} x_2 + \frac{2ac}{a^2 + b^2} \\
-\frac{2ab}{a^2 + b^2} x_1 + \frac{a^2 - b^2}{a^2 + b^2} x_2 - \frac{2bc}{a^2 + b^2}
\end{pmatrix}^2 = \begin{pmatrix}
\left(\frac{b^2 - a^2}{a^2 + b^2}\right)^2 + \left(\frac{-2ab}{a^2 + b^2}\right)^2 x_1 \\
\left(\frac{-2ab}{a^2 + b^2}\right)^2 + \left(\frac{a^2 - b^2}{a^2 + b^2}\right)^2 + \left(\frac{-2ac}{a^2 + b^2}\right)^2 - \frac{2bc}{a^2 + b^2}
\end{pmatrix}.
\]

The coefficients of \(x_1 \) and \(x_2 \) (in order of appearance in the matrix just above) reduce to

\[
\left(\frac{b^2 - a^2}{a^2 + b^2}\right)^2 + \left(\frac{-2ab}{a^2 + b^2}\right)^2 = 1,
\]

\[
\left(\frac{b^2 - a^2}{a^2 + b^2}\right)^2 + \left(\frac{-2ab}{a^2 + b^2}\right)^2 = 0,
\]

\[
\left(\frac{-2ab}{a^2 + b^2}\right)^2 + \left(\frac{a^2 - b^2}{a^2 + b^2}\right)^2 - \frac{2bc}{a^2 + b^2} = 0, \quad \text{and} \quad \left(\frac{-2ab}{a^2 + b^2}\right)^2 + \left(\frac{a^2 - b^2}{a^2 + b^2}\right)^2 = 1.
\]
The constant terms reduce as follows:

\[
\begin{align*}
&\left(\frac{a^2-a^2}{a^2+b^2} \right) \left(\frac{-2ac}{a^2+b^2} \right) + \left(\frac{-2ab}{a^2+b^2} \right) - \left(2bc_2 \right) \\
&= \left(\frac{(b^2-a^2)(-2ac_1)+(4ab^2c_1)}{(a^2+b^2)^2} \right) - \left(\frac{2ac_2}{a^2+b^2} \right) = \left(\frac{2ac_1(a^2-b^2-2b^2)}{(a^2+b^2)^2} \right) - \left(\frac{2ac_2}{a^2+b^2} \right) \\
&= \left(\frac{2ac_1(a^2+b^2)}{(a^2+b^2)^2} \right) - \left(\frac{2ac_2}{a^2+b^2} \right) = \left(\frac{2a(c_1-c_2)}{a^2+b^2} \right).
\end{align*}
\]

so that \(R_L(R_L(x_1, x_2)) = (x_1 + k_1, x_2 + k_2) \) where

\[k_1 = \frac{2a(c_1-c_2)}{a^2+b^2} \]

and

\[k_2 = \frac{2b(c_1-c_2)}{a^2+b^2}. \]

At least one of \(a \) or \(b \) is non-zero, so that \(a^2+b^2 \geq 0; \) and \(c_1 \neq c_2; \) therefore at least one of \(k_1 \) or \(k_2 \) is non-zero. Thus the mapping \(R_L \circ R_L \) is not the identity, and therefore by Theorem CS.38 is a translation. \(\square \)

4.7 Exercises for cosine and sine

Exercise CS.1 Prove part II of Theorem CS.9.

Exercise CS.2 Prove Case 2 of Theorem CS.32.

Exercise CS.3 Prove Case 3 of Theorem CS.33.

Exercise CS.4 Prove Case 4 of Theorem CS.33.

Exercise CS.5 Prove Case 5 of Theorem CS.33.

Exercise CS.6 Prove Case 6 of Theorem CS.33.

Exercise CS.7 Complete the proof of Theorem CS.38(B), the case where \(b \neq 0 \).

Exercise CS.8 Let \(L = (0,0)(\cos s, \sin s) \); for each each \((x_1, x_2) \in \mathbb{R}^2 \) define

\[\alpha(x_1, x_2) = x_1 \cos 2s + x_2 \sin 2s, \]
\[\beta(x_1, x_2) = x_1 \sin 2s + x_2 \cos 2s, \]
and

\[R_L(x_1, x_2) = (\alpha(x_1, x_2), \beta(x_1, x_2)). \]

Prove that for every \((x_1, x_2) \in \mathbb{R}^2 \setminus L \), \(\left(\frac{\alpha(x_1, x_2) + x_1}{2}, \frac{\beta(x_1, x_2) + x_2}{2} \right) \) is a point on the line \((0,0)(\cos s, \sin s) \).
Exercise CS.9 Let a and b be real numbers such that $(a, b) \neq (0, 0)$; for each $(x_1, x_2) \in \mathbb{R}^2$, define
\[
\rho(x_1, x_2) = \left(\frac{ax_1}{\sqrt{a^2 + b^2}} - \frac{bx_2}{\sqrt{a^2 + b^2}}, \frac{bx_1}{\sqrt{a^2 + b^2}} + \frac{ax_2}{\sqrt{a^2 + b^2}} \right);
\]
then ρ is a rotation about $(0, 0)$.

Exercise CS.10* According to Theorem ISM.5 for any point $A \in \mathbb{R}^2$ there is a translation τ_A such that $\tau_A(O) = A$. Definition VEC.1 uses this fact to define addition on a Euclidean plane such as \mathbb{R}^2.

Let τ_A be a translation of \mathbb{R}^2, where $A = (a_1, a_2) \neq (0, 0)$ is some point of that plane. Show that τ_A has an inverse τ_{-A} which is a translation.

Exercise CS.11* Show that a translation of \mathbb{R}^2 preserves distance, i.e. if $A = (a_1, a_2)$ is a member of $\mathbb{R}^2 \setminus \{(0, 0)\}$ and τ_A is the translation such that for every member (x_1, x_2) of \mathbb{R}^2, $\tau_A(x_1, x_2) = (x_1 + a_1, x_2 + a_2)$, then for any two members (x_1, x_2) and (y_1, y_2) of \mathbb{R}^2,
\[
\operatorname{dis}(\tau_A(x_1, x_2), \tau_A(y_1, y_2)) = \operatorname{dis}((x_1, x_2), (y_1, y_2)).
\]

Exercise CS.12* If $\operatorname{cis} t = (\cos t, \sin t)$ is a point on the unit circle $C(O; 1)$ where $O = (0, 0)$, then
\[
\operatorname{cis}(t + \pi) = -\operatorname{cis} t = (-\cos t, -\sin t)
\]
and $(\operatorname{cis} t) - O - (\operatorname{cis}(t + \pi))$.

Exercise CS.13* Let $C(O; r)$ be a circle in \mathbb{R}^2 with radius r and center $O = (0, 0)$. Then (A) no line intersects the circle $C(O; r)$ in more than two points; and (B) a line containing intersects $C(O; r)$ in two points if it contains a point X such that $\operatorname{dis}(X, O) < r$. Moreover, if a line intersects the circle $C(O; r)$ in two points A and B, the line of symmetry of $\angle AOB$ intersects the line \overrightarrow{AB} at a point C such that $\operatorname{dis} OC < r$.

4.8 Selected answers for exercises cosine and sine

Exercise CS.2 Proof. From Case 1 and the fact that cos is an even function,
\[
\cos(t - s) = \cos(s - t) = \cos t \cos s + \sin t \sin s = \cos s \cos t + \sin s \sin t.
\]
Exercise CS.7 Proof. If \(b \neq 0 \), let \(p_1 = 1 \) and \(p_2 = \frac{d+c-a}{b} \); then for all \((x_1,x_2) \in L\),
\[
\alpha(x_1, x_2) = (y_1, y_2) = (x_1 + 1, x_2 + \frac{d+c-a}{b})
\]
and
\[
ay_1 + by_2 + d = a(x_1 + 1) + b(x_2 + \frac{d+c-a}{b}) + d
= ax_1 + bx_2 + a - d + c - a + d = ax_1 + bx_2 + c = 0,
\]
so every \((x_1,x_2)\) in the line \(ax_1 + bx_2 + c = 0\) maps to a point \((x_1 + p_1, x_2 + p_2)\) in the line \(ay_1 + by_2 + d = 0\).
This completes the converse argument. \(\square\)

Exercise CS.8 Proof.
\[
\sin s \left(\frac{1}{2} \cos 2s x_1 + \frac{1}{2} \sin 2s x_1 \right) - \cos s \left(\frac{x_1 \sin 2s + x_2 \cos 2s}{2} x_1 \right)
= \cos 2s \sin s - \sin 2s \cos s \frac{x_1}{2} + \sin s \sin 2s \cos s \frac{x_2}{2} + \frac{x_1 \sin s - x_2 \cos s}{2} = 0.
\]
\(\square\)

Exercise CS.10 Proof. If \(A = (a_1, a_2) \), then \(-A = (-a_1, -a_2) \); For every member \((x_1, x_2)\) of \(\mathbb{R}^2\), \(\tau_A(x_1, x_2) = (x_1 + a_1, x_2 + a_2)\), and \(\tau_A^{-1}(x_1, x_2) = \tau_{-A}(x_1, x_2) = (x_1 - a_1, x_2 - a_2)\). Thus \(\tau_{-A}(\tau_A(x_1, x_2)) = ((x_1 + a_1) - a_1, (x_2 + a_2) - a_2) = (x_1, x_2)\). \(\square\)

Exercise CS.11 Proof.
\[
\text{dis}(\tau_A(x_1, x_2), (y_1, y_2)) = \text{dis}((x_1 + a_1, x_2 + a_2), (y_1 + a_1, y_2 + a_2))
= \sqrt{((x_1 + a_1) - (y_1 + a_1))^2 + ((x_2 + a_2) - (y_2 + a_2))^2}
= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}
= \text{dis}((x_1, x_2), (y_1, y_2)).
\]
\(\square\)

Exercise CS.12 Proof. By Theorem CS.32,
\[
\cos(t + \pi) = \cos t \cos(\pi) + \sin t \sin(\pi)
= \cos t(-1) + \sin t \cdot 0 = -\cos t
\]
and
\[
\sin(t + \pi) = \sin t \cos(\pi) - \cos t \sin(\pi)
= \sin t(-1) - \cos t \cdot 0 = -\sin t.
\]
\(\square\)
Exercise CS.13 Proof. If $X = (x_1, x_2)$ is any point on a line L, then by Remark LB.2(C) there exists a point $Y = (y_1, y_2)$ such that $Z \in L$ iff $Z = X + tY$ for some real number t. Thus, a point $Z = X + tY \in L$ is a point of $C(O; r)$ iff $(x_1 + ty_1, x_2 + ty_2) \in C(O; r)$, that is, $(x_1 + ty_1)^2 + (x_2 + ty_2)^2 = r^2$.

Expanding, we have
\[
x_1^2 + t^2y_1^2 + t(2x_1y_1) + x_2^2 + t^2y_2^2 + t(2x_2y_2) = r^2,
\]
and rearranging,
\[
x_1^2 + x_2^2 + t^2(y_1^2 + y_2^2) + t(2(x_1y_1 + x_2y_2)) = r^2,
\]
or
\[
(x_1^2 + x_2^2 - r^2) + t(2(x_1y_1 + x_2y_2)) + t^2(y_1^2 + y_2^2) = 0.
\]
This is a quadratic in t and by the quadratic formula, it has at most two solutions. This proves part (A).

To show part (B), assume that $\text{dis}(X, O) < r$, that is, $x_1^2 + x_2^2 < r^2$. Then we may state the above equation as $a + tb + tc = 0$ where $a = x_1^2 + x_2^2 - r^2$, $b = 2(x_1y_1 + x_2y_2)$, and $c = y_1^2 + y_2^2$. By the quadratic formula, this has two solutions iff the discriminant $b^2 - 4ac > 0$. That is,
\[
(2(x_1y_1 + x_2y_2))^2 - 4(x_1^2 + x_2^2 - r^2)(y_1^2 + y_2^2) > 0.
\]
Then $(2(x_1y_1 + x_2y_2))^2 > 0; (y_1^2 + y_2^2) > 0$, and $x_1^2 + x_2^2 - r^2 < 0$ so that the discriminant is greater than 0, and there are two solutions; hence the line L intersects the circle at two points.

Conversely, if L intersects the circle at two points $A = (a_1, a_2)$ and $B = (b_1, b_2)$, let M be the line of symmetry of the angle $\angle AOB$. Then let C be the point of intersection of M and $L; C \in \text{ins} \angle AOB$ and L is a fixed line for \mathcal{R}_M, so the two lines are perpendicular. It follows from the Pythagorean Theorem (Theorem VEC.26.5 or Specht Ch.15 Theorem SIM.23.1) that $\text{dis}(C, O) < 1$. \qed
Chapter 5
Angle Measure (AM)

Dependencies: Euclidean Geometry and its Subgeometries (Specht); Chapters 3 and 4 of this supplement

Acronym: AM

New terms defined: (radian) measure of an angle

We now develop the concept of angle measure, using the ideas of arc length as developed in Chapter 3 and sin and cos as developed in Chapter 4 of this Supplement. Again, in this chapter, we work in \mathbb{R}^2. Since it is shown in Chapter 21 of Specht that all the axioms of that development hold for \mathbb{R}^3 and \mathbb{R}^2, here we may use all the theorems from that book.

In chapters 3 and 4 we considered arcs on a unit circle having arc lengths up to (but not including) 2π. In this chapter we will shift our focus to arcs (on the unit circle) having length less than π, that is, which subtend angles, the definition of which (Specht Ch.5 Definition PSH.29) specifically excludes “straight angles” or anything “greater.” There are no “270 degree angles” here. Note that when we write $\angle AOB = \angle COD$ we mean set equality; there is no implication that $\overrightarrow{OA} = \overrightarrow{OC}$ or $\overrightarrow{OA} = \overrightarrow{OD}$.

References in this chapter to items labeled VEC, ARC, CS, and AM are to this Supplement; all other references, such as “Theorem PSH.41” are to Specht. Again, we refer the reader to the note **Citations and references** at the end of the Preface to this Supplement, and to the abbreviated Table of Contents (with acronyms) included there.
5.1 Definitions and theorems for angle measure

Definition/Remark AM.1 (A) Let \(O = (0, 0) \) be a point of \(\mathbb{R}^2 \), and let \(r \) be a positive real number. In Definition CS.13 we defined \(\mathcal{C}((0, 0); r) = \mathcal{C}(O; r) \) to be the circle with center \(O = (0, 0) \) and radius \(r \), and defined its inside, enclosure, and diameter. We also designated \(\mathcal{C}(O; 1) \) as the unit circle.

(B) Let \(C \) and \(D \) be points of \(\mathbb{R}^2 \) such that \(C, D, \) and \(O \) are noncollinear, so that the rays \(\overrightarrow{OC} \) and \(\overrightarrow{OD} \) form \(\angle COD \). Let \(r > 0 \) be a real number, and let \(A \) and \(B \) be points on \(\overrightarrow{OC} \) and \(\overrightarrow{OD} \), respectively, such that \(\text{dis}(O, A) = \text{dis}(O, B) = r \), so that \(\{ A \} = \mathcal{C}(O; r) \cap \overrightarrow{OC} \), and \(\{ B \} = \mathcal{C}(O; r) \cap \overrightarrow{OD} \), so that \(\angle AOB = \angle COD \).

Define \(\overrightarrow{AB} \) to be \(\mathcal{C}(O; r) \cap \text{enc} \angle AOB \). \(\overrightarrow{AB} \) is called an arc of the circle \(\mathcal{C}(O; r) \), and is said to subtend the angle \(\angle AOB \), which is a central angle of \(\mathcal{C}(O; r) \). Here \(\text{enc} \angle AOB \) means the enclosure of \(\angle AOB \), that is, the union of \(\angle AOB \) and its inside \(\text{ins} \angle AOB \) (cf Definition PSH.36).

(C) According to the definition of \(\overrightarrow{AB} \) just above, if \(F \) is a point of \(\overrightarrow{AB} \), which is neither \(A \) nor \(B \), then \(\overrightarrow{AB} \) is a subset of \(\overrightarrow{OA} \cup F\text{-side of } \overrightarrow{OA} \), and also of \(\overrightarrow{OB} \cup F\text{-side of } \overrightarrow{OB} \) (cf Theorem CS.22).

By the definition of angle (Specht Ch.5 Definition PSH.29), \(\overrightarrow{OA} \neq \overrightarrow{OB} \), that is, the rays \(\overrightarrow{OA} \) and \(\overrightarrow{OB} \) are not opposite. This definition does not allow for arcs which contain both endpoints of any diameter of the circle. In particular, on the unit circle, it does not allow arcs with length greater or equal to \(\pi \).

(D) Let \(\angle COD \) be any angle, and let \(A \) and \(B \) be points on \(\overrightarrow{OC} \) and \(\overrightarrow{OD} \), respectively, such that \(\text{dis}(O, A) = \text{dis}(O, B) = 1 \), so that both \(A \) and \(B \) are points of the unit circle \(\mathcal{C}(O; 1) \). Define the (radian) angle measure of \(\angle COD = \angle AOB \) (denoted \(\text{meas} \angle AOB \)) to be the arc length \(L(AB) \) of \(AB \).

Theorem AM.2 Let \(A \) and \(B \) be distinct points on the circle \(\mathcal{C}(O; r) \), where \(r > 0 \), for which it is false that \(A \not\sim B \). Then \(\overrightarrow{AB} \) is an arc as defined in Chapter 3, Definition ARC.1.

Proof. Let \(A' \) and \(B' \) respectively be the points of intersection of the unit circle with \(\overrightarrow{OA} \) and \(\overrightarrow{OB} \). By Theorem CS.22 the notation may be chosen (and the points possibly renamed) so that \(A = rA' = r \text{cis} a \) and \(B = rB' = r \text{cis} b \), \(b > a \), and \(b - a < \pi \). From part (C) of that theorem, \(r \text{cis}|a, b| \subseteq \text{ins} \angle AOB \) and \(r \text{cis}|a, b| + 2\pi \subseteq \text{out} \angle AOB \). From Theorem PSH.41(B),

\[
\mathcal{C}(O; r) \setminus \{ A, B \} = (\text{ins} \angle AOB \cap \mathcal{C}(O; r)) \cup (\text{out} \angle AOB \cap \mathcal{C}(O; r)).
\]
Since \(r \text{ cis } [a, a + 2\pi] \) one-to-one onto \(C(O; r) \), it is also true that
\[
C(O; r) \setminus \{A, B\} = r \text{ cis } [a, b] \cup r \text{ cis } [b, a + 2\pi]
\]
By elementary set theory, \(r \text{ cis } [a, b] = \text{ ins } \angle AOB \cap C(O; r) \) and hence
\[
r \text{ cis } [a, b] = \text{ enc } \angle AOB \cap C(O; r);
\]
therefore every arc \(\overrightarrow{AB} \) is an arc \(\text{ cis } [a, b] \) as previously defined. \(\square \)

Theorem AM.3 Let \(O \) and \(O' \) be distinct points on \(\mathbb{R}^2 \), \(r \) a positive real number, and let \(T \) be a translation of \(\mathbb{R}^2 \) such that \(T(O) = O' \). Let \(A \) and \(B \) be distinct points on the circle \(C(O; r) \) and let \(C \) and \(D \) be distinct points on the circle \(C(O'; r) \), so that \(\overrightarrow{AB} \) is an arc on \(C(O; r) \) and \(\overrightarrow{A'B'} \) is an arc on \(C(O'; r) \). Then \(\overrightarrow{AB} \cong \overrightarrow{A'B'} \iff T(\overrightarrow{AB}) \cong T(\overrightarrow{A'B'}) \).

Proof. If \(T(\overrightarrow{AB}) \cong T(\overrightarrow{A'B'}) \) there exists an isometry \(\varphi \) such that
\[
\varphi(T(\overrightarrow{AB})) = T(\overrightarrow{A'B'});
\]
then
\[
(\varphi \circ T)(\overrightarrow{AB}) = \varphi(T(\overrightarrow{AB})) = T(\overrightarrow{A'B'}),
\]
so \(\overrightarrow{AB} \cong \overrightarrow{A'B'} \).

Conversely, if \(\overrightarrow{AB} \cong \overrightarrow{A'B'} \), there exists an isometry \(\psi \) such that \(\psi(\overrightarrow{AB}) = T(\overrightarrow{A'B'}) \); thus \(T \circ \psi^{-1}(\overrightarrow{A'B'}) = T(\overrightarrow{AB}) \) so that \(T(\overrightarrow{AB}) \cong T(\overrightarrow{A'B'}) \). \(\square \)

Take note: for simplicity, several of the following theorems are stated and proved for the unit circle \(C(O; 1) \); it is easy to extend them as needed to the circle \(C(O; r) \) where \(r > 0 \).

Theorem AM.4 Let \(\overrightarrow{AB} \) and \(\overrightarrow{CD} \) be arcs on the unit circle \(C(O; 1) \). Suppose there exists an isometry \(\varphi \) such that \(\varphi(\overrightarrow{CD}) = \overrightarrow{AB} \); \(\varphi(C) = A \) and \(\varphi(D) = B \); then \(O \) is a fixed point for \(\varphi \), and \(\varphi(\angle COD) = \angle AOB \).

Proof. Since all the points \(A, B, C, \) and \(D \) are on the unit circle with center \(O \), the distance from each to \(O \) is 1. Suppose that \(O \) is not a fixed point for \(\varphi \), and let \(O' = \varphi(O) \neq O \).

Let \(\mathcal{L} \) be the right-angle bisector of the segment \(\overrightarrow{AB} = \overrightarrow{\varphi(C)\varphi(D)} \), and let \(\{P\} = \overrightarrow{AB} \cap \mathcal{L} \); then \(\mathcal{L} \) is the line of symmetry of \(\angle AOB \). Because \(\varphi \) preserves distance, \(A \) and \(B \) are also on the unit circle centered at \(O' \), and \(\mathcal{L} \) is also the line of symmetry of \(\angle AOB' \). Therefore \(\mathcal{L} = \overrightarrow{O\varphi(O)} \).

Let \(Q \) be the point of intersection of \(\overrightarrow{AB} \) and \(\mathcal{L} \). Since \(\varphi \) maps the arc \(\overrightarrow{CD} \) into the unit circle \(C(O'; 1) \) and onto the arc \(\overrightarrow{AB}, Q \in \overrightarrow{AB} \subseteq C(O'; 1) \), and \(\text{dis}(Q, O') = 1 \).
Case 1: If O' is on the O-side of Q, then $O' = O$, because there is only one point on L on each side of Q which is a distance 1 from Q.

Case 2: If $O \rightarrow \overline{O}'$; by the Pythagorean Theorem (Theorem SIM.23), $\text{dis}(P, O) < 1$ and $\text{dis}(P, O') < 1$; since $\text{dis}(Q, O) = 1, O \rightarrow \overline{Q} \rightarrow \overline{Q}$. Since $O \rightarrow \overline{Q} \rightarrow \overline{O}'$ it follows from Theorem PSH.8(A) that $P \rightarrow \overline{Q} \rightarrow \overline{O}'$; therefore, from $\text{dis}(P, O') < 1$, we have $\text{dis}(Q, O') < 1$; but $\text{dis}(Q, O') = 1$ because $Q \in C(O'; 1)$. This is a contradiction. □

Theorem AM.5 Let O be a point on \mathbb{R}^2, and let A, B, C, and D be points on the unit circle $C(O; 1)$ such that $A \neq B$, $C \neq D$, and \overline{AB} and \overline{CD} are arcs on this circle.

(1) If φ is an isometry on \mathbb{R}^2; then $\varphi(\overline{AB}) = \overline{CD}$ iff $\varphi(\overline{AOB}) = \overline{COD}$. That is to say, $\overline{AB} \cong \overline{CD}$ iff $\overline{AOB} \cong \overline{COD}$.

(2) If ρ is a rotation of the plane; then $\rho(\overline{AB}) = \overline{CD}$ iff $\rho(\overline{AOB}) = \overline{COD}$.

(3) The following statements are equivalent:

(a) \overline{AB} and \overline{CD} have the same arc length; that is, $L(\overline{AB}) = L(\overline{CD})$;

(b) there exists an isometry on \mathbb{R}^2 such that $\varphi(\overline{AB}) = \overline{CD}$; and

(c) there exists a rotation ρ such that $\rho(\overline{AB}) = \overline{CD}$.

Proof. (1) If φ is an isometry such that $\varphi(\overline{AB}) = \overline{CD}$, then either $\varphi(A) = C$ and $\varphi(B) = D$, or $\varphi(A) = D$ and $\varphi(B) = C$. By Theorem AM.4, $\varphi(O) = O$, so that either $\varphi(A) \in \overline{OC}$ and $\varphi(B) \in \overline{OD}$ or $\varphi(A) \in \overline{OD}$ and $\varphi(B) \in \overline{OC}$; in either case, $\varphi(\overline{AOB}) = \overline{COD}$.

Conversely, if φ is an isometry and $\varphi(\overline{AOB}) = \overline{COD}$, by Theorem NEUT.15(11) $\varphi(\text{ins} \overline{AOB}) = \text{ins} \overline{COD}$, so that $\varphi(\text{enc} \overline{AOB}) = \text{enc} \overline{COD}$. Also φ preserves distance so that it maps the unit circle onto itself. It follows that $\varphi(\text{enc} \overline{AOB}) \cap C(O; 1) = \text{enc} \overline{COD} \cap C(O; 1)$, that is to say, $\varphi(\overline{AB}) = \overline{CD}$.

(2) If ρ is a rotation, it is an isometry; then if $\rho(\overline{AB}) = \overline{CD}$, by part (1) $\rho(O) = O$ and $\rho(\overline{AOB}) = \overline{COD}$. Conversely, if ρ is a rotation such that $\rho(\overline{AOB}) = \overline{COD}$, by part (1) $\rho(\overline{AB}) = \overline{CD}$.

(3) We shall prove (a)\Rightarrow(c)\Rightarrow(b)\Rightarrow(a).

(a)\Rightarrow(c): If $L(\overline{AB}) = L(\overline{CD})$, then by Corollary CS.30, there exists a rotation ρ such that $\rho(\overline{AB}) = \overline{CD}$.

(c)\Rightarrow(b): If ρ is a rotation then it is an isometry.
(b) \Rightarrow (a): If φ is an isometry such that $\varphi(\widehat{AB}) = \widehat{CD}$, by Theorem AM.4, $\varphi(O) = O$; by Lemma CS.23(B), it follows that $L(\widehat{AB}) = L(\widehat{CD})$. □

Theorem AM.6 Let A, B, O, A', B', and O' be points on \mathbb{R}^2 such that $A, B,$ and O are noncollinear and A', B', and O' are noncollinear; then $\angle AOB \cong \angle A'O'B'$ iff $\text{meas} \angle AOB = \text{meas} \angle A'O'B'$.

Proof. We may choose these points so that $\text{dis}(O, A) = \text{dis}(O, B) = 1$ and $\text{dis}(O', A') = \text{dis}(O', B') = 1$. Then by Definition AM.1, $\text{meas} \angle AOB = \text{meas} \angle A'O'B'$ iff the arc lengths $L(\widehat{AB})$ and $L(\widehat{A'B'})$ are the same. Suppose $\angle AOB \cong \angle A'O'B'$; let φ be the isometry such that $\varphi(\angle AOB) = \angle A'O'B'$; then by Specht Ch.8 Theorem NEUT.15(11), $\varphi(\text{ins} \angle AOB) = \text{ins} \angle A'O'B'$. Since φ preserves distance, $\varphi(C(O; 1)) = C(O'; 1)$. Since φ is one-to-one, and using elementary set theory,

$$\varphi(\widehat{AB}) = \varphi(\text{ins} \angle AOB \cap C(0; 1)) = \varphi(\text{ins} \angle AOB) \cap \varphi(C(0; 1)) = \text{ins} \angle A'O'B' \cap C(0'; 1) = \widehat{A'B'}.$$

Then by Lemma CS.23, $L(\widehat{AB}) = L(\widehat{A'B'})$, that is, the angles have the same measure.

Conversely, suppose that $L(\widehat{AB}) = L(\widehat{A'B'})$, Let T be the translation of \mathbb{R}^2 such that $T(O) = O'$. Then T is an isometry, and preserves distance, so that $T(C(O; 1)) = C(O'; 1)$. By Lemma CS.23, $T(\large{\overrightarrow{AB}})$ is an arc on $C(O'; 1)$ which has the same arc length as \widehat{AB}. Because $L(\widehat{A'B'}) = L(\widehat{AB}) = L(T(\large{\overrightarrow{AB}}))$, by Theorem AM.5(3) there exists an isometry ψ such that $\psi(T(\large{\overrightarrow{AB}})) = \widehat{A'B'}$; then $\psi \circ \varphi$ is an isometry mapping \widehat{AB} onto $\widehat{A'B'}$. □

Theorem AM.7 (A) Let A, O, and B be noncollinear points on \mathbb{R}^2 and let C be a member of $\text{ins} \angle AOB$, then

$$\text{meas} \angle AOC + \text{meas} \angle BOC = \text{meas} \angle AOB.$$

(B) Let A, O, and B be points such that $A-O-B$ and let C be a point off of \overline{AB}, then $\text{meas} \angle AOC + \text{meas} \angle BOC = \pi$.

Proof. Without loss of generality we can assume that all points A, B, and C are on the unit circle $C(O; 1)$ with center O and radius 1.

(A) Since by Theorem AM.2, \widehat{AB} is the image under the mapping cis of some interval $[a, b]$ where $A = \text{cis} \ a$ and $B = \text{cis} \ b$, for some c with $a < c < b$, $C = \text{cis} \ c$. Then by Theorem ARC.4,

$$\text{meas} \angle AOC + \text{meas} \angle BOC = L(\widehat{AC}) + L(\widehat{CB}) = L(\widehat{AB}) = \text{meas} \angle AOB.$$

(B) Suppose that $A = \text{cis} \ a$; then $B = \text{cis}(a+\pi) = \text{cis}(a-\pi)$. Then $C = \text{cis} \ c$ where either $a < c < a+\pi$ or $a > c > a-\pi$. If $a < c < a+\pi$ ($a > c > a-\pi$), let
Theorem AM.8 (Sum of measures of angles of a triangle is π.) Let A, B, and C be noncollinear points on \mathbb{R}^2, then $\meas \angle ABC + \meas \angle BCA + \meas \angle CAB = \pi$.

Proof. Let $L = \text{par}(B, \overrightarrow{CA})$ be the line parallel to \overrightarrow{CA} which contains B. (cf Axiom PS) Let D and E be points of L such that D is on the A-side of \overrightarrow{BC}, E is on the C-side of \overrightarrow{AB}, and $D-B-E$. By Theorem EUC.11 $\angle ABD \cong \angle BAC$ and $\angle EBC \cong \angle ACB$. By Theorem AM.6 $\meas \angle ABD = \meas \angle BAC$ and $\meas \angle EBC = \meas \angle ACB$. By Theorem AM.7(A) $\meas \angle ABC + \meas \angle BAC = \meas \angle EBA$. Putting all this together and using Theorem AM.7(B),

$$\meas \angle ACB + \meas \angle ABC + \meas \angle BAC = \meas \angle EBC + \meas \angle ABC + \meas \angle ABD = \meas \angle EBA + \meas \angle ABD = \pi.$$ \hfill \Box

Corollary AM.9 Let A, B, and C be noncollinear points on \mathbb{R}^2, and let D be a point such that $C-A-D$; then $\meas \angle ABC + \meas \angle BCA = \meas \angle BAD$.

Proof. Let E be a point such that $E \in \text{par}(A, \overrightarrow{BC})$ and E and B are on the same side of \overrightarrow{AC}. By Theorem EUC.11 $\angle ABC \cong \angle BAE$ and $\angle BCA \cong \angle EAD$. By Theorem AM.6 $\meas \angle ABC = \meas \angle BAE$ and $\meas \angle BAC = \meas \angle DAE$. By Theorem AM.7 $\meas \angle BAE + \meas \angle DAE = \meas \angle BAD$. Therefore $\meas \angle ABC + \meas \angle BAC = \meas \angle BAD$. \hfill \Box

We can restate Corollary AM.9 thusly: The sum of the measures of any two angles of a triangle is equal to the measure of an exterior angle at the other corner of the triangle.

Theorem AM.10 Let r be a positive real number and let $C(O;r)$ be the circle with center O and radius r on \mathbb{R}^2. Let A, B, and C be noncollinear points on $C(O;r)$ such that $C-O-A$; then $\meas \angle ACB = \meas \angle OBC = \frac{1}{2} \meas \angle AOB$.

\[\mathcal{E} = \{ A, B \} \cup (C(O; 1) \cap C \text{-side of } \overrightarrow{AB}) \text{.} \] Then $\mathcal{E} = \overrightarrow{AC} \cup \overrightarrow{CB}$. By Theorem ARC.4,

$$\meas \angle AOC + \meas \angle COB;$$

By Theorem CS.19(B), $\meas \angle AOC + \meas \angle COB = \pi$. \hfill \Box
Proof. Since $\text{dis}(O, B) = \text{dis}(O, C) = r$, $\overrightarrow{OB} \cong \overrightarrow{OC}$. By Theorem NEUT.40 (Pons Asinorum) $\angle OBC \cong \angle OCB$. By Theorem AM.6 $\text{meas} \angle OBC = \text{meas} \angle OCB$. By Theorems AM.6 and AM.9 $\text{meas} \angle AOB = \text{meas} \angle OBC + \text{meas} \angle OCB = 2 \text{meas} \angle ACB$. Therefore $\text{meas} \angle ACB = \text{meas} \angle OBC = \frac{1}{2} \text{meas} \angle AOB$. □

Corollary AM.11 Let r be a positive real number and let $\mathcal{C}(O; r)$ be the circle with center O and radius r on \mathbb{R}^2. Let A, B, and C be noncollinear points on $\mathcal{C}(O; r)$ such that $C-O-A$ and A, B, and C are noncollinear, then $\text{meas} \angle ACB = \frac{\pi}{2}$.

Proof. By Theorem AM.10, $\text{meas} \angle OBC = \frac{1}{2} \text{meas} \angle AOB$ and $\text{meas} \angle OBA = \frac{1}{2} \text{meas} \angle BOC$. Then by Theorem AM.7(B), $\text{meas} \angle AOB + \text{meas} \angle BOC = \pi$, so that $\text{meas} \angle ABC = \text{meas} \angle OBC + \text{meas} \angle OBA = \frac{\pi}{2}$. □

Theorem AM.12 Let r be a positive real number and let $\mathcal{C}(O; r)$ be the circle on \mathbb{R}^2; let A, B, and C be noncollinear points on $\mathcal{C}(O; r)$, then $\text{meas} \angle BAC = \frac{1}{2} \text{meas} \angle BOC$.

Proof. (Case 1: $A-O-C$.) This is Theorem AM.10.
In the next two cases, let D be the point of intersection of \overrightarrow{AO} and $\mathcal{C}(O; r)$.
(Case 2: $O \in \text{ins} \angle BAC$.) By Theorem AM.7
$\text{meas} \angle BAC = \text{meas} \angle BAD + \text{meas} \angle CAD$.
By Theorem AM.10,
$\text{meas} \angle CAD = \frac{1}{2} \text{meas} \angle COD$ and $\text{meas} \angle BAD = \frac{1}{2} \text{meas} \angle BOD$.
By Theorem AM.7 $\text{meas} \angle BOD + \text{meas} \angle COD = \text{meas} \angle BOC$. Therefore
$\frac{1}{2} \text{meas} \angle BOC = \frac{1}{2} \text{meas} \angle BOD + \frac{1}{2} \text{meas} \angle COD$
$= \text{meas} \angle BAD + \text{meas} \angle CAD = \text{meas} \angle BAC$.
(Case 3: $O \in \text{out} \angle BAC$.) By Theorem AM.7(A)
$\text{meas} \angle BAC + \text{meas} \angle CAD = \text{meas} \angle BAD$
and
$\text{meas} \angle BOC + \text{meas} \angle COD = \text{meas} \angle BOD$.
Therefore,
$\text{meas} \angle BAC = \text{meas} \angle BAD - \text{meas} \angle CAD$
and
$\text{meas} \angle BOC = \text{meas} \angle BOD - \text{meas} \angle COD$.
By Case 1 (that is, Theorem AM.10),
$\frac{1}{2} \text{meas} \angle COD = \text{meas} \angle CAD$ and $\frac{1}{2} \text{meas} \angle BOD = \text{meas} \angle BAD$.

Then
\[
\frac{1}{2} \text{meas } \angle BOC = \frac{1}{2} \text{meas } \angle BOD - \frac{1}{2} \text{meas } \angle COD
= \text{meas } \angle BAD - \text{meas } \angle CAD = \text{meas } \angle BAC.
\]

\textbf{Theorem AM.13 (Geometric proof of square roots)} Given a segment with length \(H \), another segment can be constructed having length \(\sqrt{H} \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.1}
\caption{For Theorem AM.13.}
\end{figure}

\textit{Proof.} Refer to Figure 5.1. Let \(O \) be any point on \(\mathbb{R}^2 \) and let \(C(O; \frac{H+1}{2}) \) be the circle on \(\mathbb{R}^2 \) with center \(O \) and radius \(\frac{H+1}{2} \). Let \(A \) and \(B \) be points on this circle such that \(A \sim O \sim B \), and let \(D \) be the point on \(AO \) such that \(\text{dis}(A, D) = H \) and \(\text{dis}(D, B) = 1 \) (if \(H = 1 \) then \(D = O \)). Let \(M \) be the line through \(D \) which is perpendicular to \(\overrightarrow{AB} \). Since \(\text{dis}(D, O) < \frac{H+1}{2} \), by Exercise CS.13 the line \(M \) intersects \(C(O; \frac{H+1}{2}) \) at two points \(C \) and \(E \). By Theorem AM.8
\[
\text{meas } \angle CAD + \text{meas } \angle ACD + \text{meas } \angle ADC = \pi.
\]

By Exercise AM.1, \(\text{meas } \angle ADC = \frac{\pi}{2} \) so that
\[
\text{meas } \angle CAD + \text{meas } \angle ACD = \frac{\pi}{2}.
\]

By similar reasoning, \(\text{meas } \angle BCD + \text{meas } \angle CBD = \frac{\pi}{2} \).

By Corollary AM.11, \(\text{meas } \angle ACB = \frac{\pi}{2} \); again by Theorem AM.8
\[
\text{meas } \angle ABC + \text{meas } \angle ACB + \text{meas } \angle BAC = \pi,
\]
so that \(\text{meas } \angle ABC + \text{meas } \angle BAC = \frac{\pi}{2} \).

Since \(\triangle ABC \) and \(\triangle ADC \) have \(\angle BAC \) in common,
\[
\text{meas } \angle ACD = \text{meas } \angle CBD.
\]

Since \(\triangle ABC \) and \(\triangle CBO \) have \(\angle ABC \) in common,
\[
\text{meas } \angle BAC = \text{meas } \angle BCD.
\]
By Specht Ch.15 Theorem SIM.18 $\triangle ACD \sim \triangle CBD$. Moreover $\frac{CD}{AD} = \frac{BD}{CD}$, i.e., $|CD|^2 = |AD| \cdot |DB|$. Hence $(\text{dis}(C, D))^2 = \text{dis}(A, D) \cdot \text{dis}(D, B)$. Since $\text{dis}(D, B) = 1$, $\text{dis}(C, D) = \sqrt{\text{dis}(A, D)}$. \hfill \Box

Remark AM.14 In algebra the ordered extension field $\mathcal{S}F$ of the rational numbers such that every positive (real) number belonging to it has a square root is called the *surd* field. It is the “smallest” ordered subfield of real numbers such that every positive number belonging to it has a square root belonging to it.

Theorem AM.13 shows that the underlying field in coordinate space must contain square roots in order to carry out the full development of this book in coordinate space.

That is, given a segment \overline{AD} having length H, from Theorem AM.13 there exists a segment \overline{CD} having length \sqrt{H}. Definition VEC.26.1 in Chapter 1 defines the length of this segment to be the real number c such that $\overline{OCU} = \overline{OX}$, where $\overline{CD} \cong \overline{OS}$ and the length of U is 1. This is impossible unless there is a real number \sqrt{H}.

5.2 Exercises for angle measure

Exercise AM.1 The radian measure of a right angle is $\frac{\pi}{2}$.

5.3 Selected answers for angle measure

Exercise AM.1 Proof. By Definition NEUT.41(C) an angle $\angle BAC$ is right iff it is congruent to a supplement of itself. Let $\angle DAE$ be a supplement of $\angle BAC$, so that $\angle DAE \cong \angle BAC$. By Theorem AM.7(B), $\meas \angle DAE + \meas \angle BAC = \pi$. By Theorem AM.6 $\meas \angle DAE = \meas \angle BAC$, therefore $\meas \angle DAE = \meas \angle BAC = \frac{\pi}{2}$. \hfill \Box
Chapter 6
The Jordan Curve Theorem for Polygons

Dependencies: Chapters 1, 4, 5, and 6 from Euclidean Geometry and its Subgeometries (Specht)
Acronyms: JCT, PLGN, SEP, CNV, CNT
New terms defined: polygon, inside, outside, enclosure, exclosure, side; polygonal path, subpath, j-corner, j-edge, adjacent edges, adjacent corners, endpoints, simple; polygonally connected, admissible ray, admissible angle, entering, exiting; parity, even, odd; separates the plane; support, supporting line, basic line, extremal point, normal point, bounded (set); regular corner, irregular corner

This chapter is dependent only on Pasch geometry and ordering, as developed in Chapters 5 and 6 of Specht; it does not depend on, or refer to other chapters in this Supplement. In it, “plane” will mean “Pasch plane.”

Items referenced by acronyms JCT, PLGN, SEP, CNV, or CNT (for instance “Lemma PLGN.3”) will be internal references to this chapter. Other items (as, for instance “Theorem PSH.6”) will be from chapters in Specht according to the following table, which is a subset of the abbreviated Table of Contents for Specht at the end of the Preface of this Supplement.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>Preliminaries and Incidence Geometry</td>
<td>1</td>
</tr>
<tr>
<td>IB</td>
<td>4</td>
<td>Incidence and Betweenness</td>
<td>63</td>
</tr>
<tr>
<td>PSH</td>
<td>5</td>
<td>Pasch Geometry</td>
<td>79</td>
</tr>
<tr>
<td>ORD</td>
<td>6</td>
<td>Ordering a line in a Pasch Plane</td>
<td>139</td>
</tr>
</tbody>
</table>

The Jordan Curve Theorem says that the complement of a simple, closed curve is the union of two connected sets, one of them (the interior) being
bounded, the other (the exterior) unbounded; the curve is the boundary of both the interior and the exterior, and any path from the interior to the exterior must intersect this boundary.

This is quite intuitively obvious; indeed, Professor F. E. Ulrich used to introduce it in his Complex Analysis course at Rice by saying “Every cow knows this theorem; she knows that if she’s in the pasture and wants to get out, she has to cross the fence.”

Camille Jordan (1838–1922) was the first to give a proof in the continuous case, which was published in his book *Cours d’analyse de l’École Polytechnique* [1]; but his proof was considered by many mathematicians to be faulty. Moreover, Jordan assumed the validity of the theorem for the case of a simple closed polygonal path.

It is this polygonal case that we prove in this chapter. Some say this case is quite easy to prove, but we have not sought a minimal path to it; we will, rather, embark on a rather leisurely exploration of the properties of polygons which will eventuate in Jordan’s theorem, which we now state more precisely.

Theorem JCT.1 (Jordan Curve Theorem (JCT) for a simple polygon) If \mathcal{G} is a simple polygon in the Pasch plane \mathcal{P}, then

(A) $\mathcal{P} = \mathcal{G} \cup \text{ins} \mathcal{G} \cup \text{out} \mathcal{G}$, where \mathcal{G}, $\text{ins} \mathcal{G}$, and $\text{out} \mathcal{G}$ are pairwise disjoint sets;

(B) if $P \in \text{ins} \mathcal{G}$ and $Q \in \text{out} \mathcal{G}$, then $\overrightarrow{PQ} \cap \mathcal{G} \neq \emptyset$;

(C) \mathcal{G} and $\text{ins} \mathcal{G}$ are bounded sets, and $\text{out} \mathcal{G}$ is unbounded; and

(D) $\text{ins} \mathcal{G}$ and $\text{out} \mathcal{G}$ are polygonally connected sets.

Here we have violated our usual practice and used terms before they are defined, relying on your intuition for the meanings of several words. We have not defined the terms *simple polygon* or *polygonal connectedness* (to be defined in Definition PLGN.5), let alone *inside* ($\text{ins} \mathcal{G}$) and *outside* ($\text{out} \mathcal{G}$) of a polygon \mathcal{G} (to be defined in Definition SEP.3). The terms *bounded* and *unbounded* sets are defined in Definition CNV.21.

Remark JCT.2 (Alternatives for reading the chapter) Conclusions (A) and (B) of Theorem JCT.1 are Theorem SEP.12; together they define what we mean by saying that the curve (or polygon) “is the boundary of both the interior and the exterior” of the plane: the *boundary* is what the cow has to cross to get out of the pasture.
Conclusion (C) is Theorem CNV.22; and conclusion (D) is Theorem CNT.3. This provides several alternatives for reading the chapter, or part of it.

The development leading to conclusion (C) includes Theorems SEP.13 through SEP.15, and the development leading to conclusion (D) includes at least Theorems CNV.22 through CNV.29. The acronyms do not correspond to the part of the JCT theorem being proved.

The reader who wishes to pursue the proof in the more general continuous case might well begin with G. T. Whyburn, *Analytic Topology*, AMS Colloquium Publications, Chapter VI, (Reprint) [4].

6.1 Segments and rays (PLGN)

This section develops basic facts about the intersections of a ray and an arbitrary collection of segments in the plane. In order to have the most general possible application we use the notation CD^S to denote a “generic” segment with endpoints C and D. Thus, CD^S will denote either $\overline{CD}, \overline{CD}$, or \overline{CD}. In the case that $C = D$, either $CD^S = \overline{CD} = \{C\} = \{D\}$ or $CD^S = \emptyset$.

(Note that Specht Ch.4 Definition IB.3, where segments are defined, does not accommodate the case where both endpoints are the same and the segment is a single point, whereas here we may wish sometimes to regard that case as a “degenerate” segment.)

Lemma PLGN.1 (Intersections of a segment and a ray) Let UV^S be any segment in the Pasch plane \mathcal{P}, with $U \neq V$, and let A and B be two distinct points of the plane, where $A \notin UV^S$. Then exactly one of the following is true:

1. $\overline{AB} \cap UV^S = \emptyset$,
2. $\overline{AB} \cap UV^S = \{W\} \text{ where } U \neq W \neq V$,
3. $\overline{AB} \cap UV^S = \{W\} \text{ where } W = U \text{ or } W = V$, or
4. $\overline{AB} \cap UV^S = UV^S$ and A, B, U, V are collinear.

Proof. See Figure 6.1. If $\overline{AB} \cap UV^S \neq \emptyset$, either the intersection is a single point or is not. If it is the single point $\{W\}$, either $W = U$, $W = V$ or $U \neq W \neq V$. (Alternatives (1) and (2) in the statement of the Lemma)
If the intersection contains more than one point, by Axiom I.1 the line \overrightarrow{AB} is the same as the line \overrightarrow{UV} so that A, B, U, V must be collinear. If UV^S is not a subset of \overrightarrow{AB}, let X be a point of UV^S that is not a member of \overrightarrow{AB}; then $X \not\in \overrightarrow{AB}$. Let $Y \in \overrightarrow{AB} \cap UV^S$, so that $X \not\in \overrightarrow{AB}, Y$. Both X and Y belong to UV^S and therefore $A \in UV^S$, a contradiction to our hypothesis. Thus $UV^S \subseteq \overrightarrow{AB}$ and (3) is established.

Corollary PLGN.1.1

(A) If A, B, U, V are collinear points, either (0) or (3) holds.

(B) Conclusion (2) implies that either U or $V \in UV^S$, and is impossible if $UV^S = \overrightarrow{UV}$.

Corollary PLGN.1.2 If A, B, and U are distinct points of the plane and $UV^S = \overrightarrow{UU}$, then conclusion (1) is impossible, and (2) and (3) are equivalent.

In what follows, we adopt the following conventions: if K and L are two subsets of a set ordered by $<$ and A is a point of the set, then

1. $K < L$ means that for every $K \in K$ and every $L \in L$, $K < L$;
2. $A < L$ means $\{ A \} < L$, that is, for every $L \in L$, $A < L$; and
3. $L < A$ means $L < \{ A \}$, that is, for every $L \in L$, $L < A$.

Lemma PLGN.2 (Order of disjoint collinear segments) Let \overrightarrow{PQ} be a segment in the plane which is ordered by an order relation $<$ according to Definition ORD.1 (as a subset of a line \mathcal{L}). Let A, B, C, and D be distinct points on \overrightarrow{PQ}.

(A) If $A \notin CD^S$, and there exists a point $Y \in CD^S$ such that $A < Y$, then for every $Z \in CD^S$, $A < Z$, that is, $A < CD^S$.

(B) If $A \notin CD^S$, and there exists a point $Y \in CD^S$ such that $A > Y$, then for every $Z \in CD^S$, $A > Z$, that is, $A > CD^S$.
(C) If \(AB^S \cap CD^S = \emptyset \), and there exists a point \(X \in AB^S \) and a point \(Y \in CD^S \) such that \(X < Y \), then for every \(W \in AB^S \) and \(Z \in CD^S \), \(W < Z \), that is, \(AB^S < CD^S \).

Proof. (A) Let \(Z \) be any point of \(CD^S \); either \(Y \leq Z \) or \(Z < Y \). In the first case, \(A < Y \leq Z \) so \(A < Z \). In the second case, if \(Z \leq A, Z \neq A \) because \(A \notin CD^S \), so the only possibility is \(Z < A < Y \); but then \(A \in \overline{ZY} \subseteq CD^S \), so the only possibility is \(Z < A < Y \); but then \(A \in \overline{ZY} \subseteq CD^S \) which is impossible by hypothesis. A similar proof (with the inequalities reversed) shows part (B).

(C) Since \(X < Y \) and \(X \notin CD^S \), by part (A), \(X < Z \) for every \(Z \in CD^S \). Let \(Z \) be any member of \(CD^S \); since \(Z \notin AB^S \) and \(Z > X \), for every \(W \in AB^S, Z > W \) by part (B). Since \(Z \) is arbitrary, \(AB^S < CD^S \).

Lemma PLGN.3 Let \(P \) and \(Q \) be any distinct points on the plane; let \(< \) be the ordering on \(\overrightarrow{PQ} \) given by Specht Ch.6 Definition ORD.1 with \(P < Q \), and let \(E \) be any finite subset of \(\overrightarrow{PQ} \). Then

1. there exists a minimum (least, first) point \(C \) and a maximum (greatest, last) point \(D \) for \(E \) (see also Remark PLGN.5.1),
2. \(E \subseteq \overrightarrow{CD} \), and
3. if \(H \) is any segment and \(E \subseteq H \subseteq \overrightarrow{PQ} \), then \(\overrightarrow{CD} \subseteq H \) (\(\overrightarrow{CD} \) is the smallest segment containing \(E \)).

Proof. Conclusion (1) is immediate from Theorem ORD.10; (2) follows (Definition ORD.8) because for all \(X \in E, X \geq C \) and \(X \leq D \). To show (3) suppose \(E \subseteq H \), and there is a point \(X \in \overrightarrow{CD} \) such that \(X \notin H \). Then \(C \leq X \leq D \). \(H \) is a segment containing \(E \) so either \(H < X \) or \(H > X \). If \(H < X, E < X \) and in particular \(D < X \) which contradicts \(X \leq D \). A similar proof gives a contradiction if \(H > X \).

Theorem PLGN.4 Let \(E = \bigcup_{k=1}^{n} E_k \), where each \(E_k \) is a closed segment (possibly a single point) in the Pasch plane \(P \). Let \(P \) and \(Q \) be points on the Pasch plane \(P \) where \(P \notin E \).

(A) If \(\overrightarrow{PQ} \) is ordered so that \(P < Q \) and \(\overrightarrow{PQ} \cap E \neq \emptyset \), there exists a first point \(C \in \overrightarrow{PQ} \) such that \(C \in E \), and a last point \(D \in \overrightarrow{PQ} \) such that \(D \in E \). Moreover, \(\overrightarrow{PQ} \cap E \subseteq \overrightarrow{CD} \).

(B) There exists a point \(A \in \overrightarrow{PQ} \) such that \(\overrightarrow{PA} \cap E = \emptyset \).

Proof. (A) The intersection of every closed segment with \(P \overline{Q} \) is a closed segment or the empty set. By elementary set theory, \(E \cap P \overline{Q} = \bigcup_{k=1}^{n}(E_k \cap P \overline{Q}) \) and each set \(F_k = E_k \cap P \overline{Q} \) is also a closed segment which is a subset of \(P \overline{Q} \).

Each segment \(F_k \) has endpoints \(C_k \) and \(D_k \), where \(C_k \leq D_k \) (again allowing the possibility that \(C_k = D_k \), so that for each \(k \), \(F_k = C_k D_k \)). Let \(G \) be the set of all end points \(C_k \) and \(D_k \). Using Lemma PLGN.3(1), choose \(C \) and \(D \) to be the first and last points, respectively, of \(G \).

Let \(X \) be any point of \(\bigcup_{k=1}^{n} F_k \); then for some \(k \), \(X \in F_k \), so that \(C \leq C_k \leq X \leq D_k \leq D \). Therefore \(C \) is the first point of \(P \overline{Q} \) such that \(C \in \bigcup_{k=1}^{n} F_k = E \cap P \overline{Q} \), \(D \) is the last such point, and \(E \cap P \overline{Q} \subseteq CD \).

(B) If \(P \overline{Q} \cap E = \emptyset \) then let \(A \) be any point of \(P \overline{Q} \), and \(\overline{PA} \cap E = \emptyset \). If \(P \overline{Q} \cap E \neq \emptyset \), order \(P \overline{Q} \) so that \(P < Q \), and apply part (A) to get \(C \), the first point of intersection of \(P \overline{Q} \) and \(E \). Let \(A \) be any point of \(P \overline{Q} \) such that \(P \overline{A} \subseteq CD \); then \(\overline{PA} \cap E = \emptyset \). \(\square \)

6.2 Polygons, polygonal paths, and rays (PLGN)

In the following theorems we will need some basic terminology about modular integers. We say that an integer \(a \) is divisible by an integer \(b \) iff there exists an integer \(c \) such that \(a = bc \), that is, \(b \) divides \(a \) without a remainder. Let \(m \) be a natural number, and let \(a \) and \(b \) be integers. We say that \(a \) is congruent to \(b \mod m \) (and write \(a \equiv b \mod m \)) iff \(a - b \) is divisible by \(m \), which is called the modulus.

For any natural number \(m \), the relation \(a \equiv b \mod m \) is an equivalence relation (cf Section 1.4). The equivalence class of any integer \(a \) is the set of all integers of the form \(km + a \), where \(k \) is any integer and \(m \) is the modulus.

In modular numbering, two integers which differ by a multiple of the modulus are identified, as they belong to the same equivalence class \(\mod m \). Telling time on an ordinary 12 hour clock is a good example of a use of modular numbers. There is a 48 hour difference between 10 AM on 11 May and 10 AM on 13 May, but the clock indicates the same at both times because the number of hours between these two times is a multiple of 12.

In this section we will arbitrarily choose some corner of a polygon\(^1\) as the “first” one, and label it as \(X_1 \). As the polygon is traversed in some

\(^1\) Here we are being very informal, as we have not yet defined the term polygon.
predetermined direction, each corner encountered in the traversal is named successively $X_2, X_3,$ and so on, until the first corner is again reached. X_1 is then given a second name, $X_{m+1},$ where m is the number of corners of the polygon (the modulus of the numbering system). Additional traversals in the same direction will re-name X_1 as $X_{1+2m}, X_{1+3m}, \ldots$ and so on. The polygon can also be traversed in the opposite direction, with successive corners being labeled $X_0, X_{−1}, X_{−2},$ and so on, until the first corner is reached, and is named $X_{1−m};$ another traversal in the same direction will name this point $X_{1−2m},$ and so on. Thus the first corner will end up having infinitely many names, $\ldots, X_{1−3m}, X_{1−2m}, X_{1−m}, X_1, X_{1+m}, X_{1+2m}, X_{1+3m}, \ldots,$ each of which differs from another by a multiple of $m.$ We formalize these ideas in the following definitions and proofs.

It is not our purpose to create a general theory of polygons, so in the next definition we define only simple polygons. We will sometimes use the word “polygon” alone, but it will always mean “simple polygon.”

Definition PLGN.5 Let X be a mapping from the set \mathbb{Z} of integers into a Pasch plane \mathcal{P} (that is, $X : \mathbb{Z} \rightarrow \mathcal{P}$). Then X pairs each integer $i = \ldots, −m, \ldots, −3, −2, −1, 0, 1, 2, 3, \ldots, n, \ldots$ with a point X_i of \mathcal{P} (here, instead of the usual notation $X(i)$ for the value of X at the integer i, we write X_i). X is a labeling function, and is necessarily many-to-one, as it pairs many integers with the same point on the plane.

(A) **Polygons:** Let $n \geq 3,$ and suppose that for all integers i and $j,$ $X_i = X_j$ iff $i \equiv j \pmod{n}.$ The set $\mathcal{G} = \bigcup_{k=1}^{n} X_kX_{k+1}$ is a simple polygon (notation: $\langle X_1, \ldots, X_n \rangle$) iff both

1. for all integers $j,$
 \[
 X_jX_{j+1} \cap X_{j+1}X_{j+2} = \{X_{j+1}\} \text{ and } X_j, X_{j+1}, \text{ and } X_{j+2} \text{ are noncollinear, and}
 \]
 \[
 X_jX_{j+1} \cap X_kX_{k+1} = \emptyset.
 \]

2. for all integers j and k such that $j \not\equiv k \pmod{n},$ $j \not\equiv k + 1 \pmod{n},$ and $j \not\equiv k - 1 \pmod{n},$
 \[
 X_jX_{j+1} \cap X_kX_{k+1} = \emptyset.
 \]

For every integer $j,$ the point X_j is called the j-corner and the segment X_jX_{j+1} is called the j-edge.

Two integers i and j are adjacent iff $i = j + 1$ or $j = i + 1.$

Two corners X_i and X_j of a polygon with n edges are adjacent iff either $i \equiv j + 1 \pmod{n}$ or $j \equiv i + 1 \pmod{n}.$
The i-edge X_iX_{i+1} and the j-edge X_jX_{j+1} of a polygon are adjacent iff either $i \equiv j + 1 \pmod{n}$ or $j \equiv i + 1 \pmod{n}$.

Note that any quadrilateral as defined by Specht Ch.5 Definition PSH.31 is a simple polygon, since opposite edges do not intersect, and any triangle as defined by Definition IB.7 is a simple polygon (vacuously, since condition (2) of Definition PLGN.5(A) is true for a triangle because its hypothesis is false).

(B) Polygonal paths: In this part of the definition, we do not use modular numbering. Let P be the Pasch plane and X be a mapping from the set $[1; m+1]$ of integers into P such that for all integers i and $j \in [1; m+1]$,

$$X_i = X_j \iff i = j.$$

(1) Let $m \geq 3$; the set $J = \bigcup_{k=1}^m X_kX_{k+1}$ (notation: $\langle\langle X_1, \ldots, X_{m+1}\rangle\rangle$) is a polygonal path (with endpoints X_1 and X_{m+1}) iff for all integers $j \in [1; m-1]$,

$$X_jX_{j+1} \cap X_{j+1}X_{j+2} = \{X_{j+1}\} \quad \text{and} \quad X_j, X_{j+1}, \text{and } X_{j+2} \text{ are noncollinear.}$$

In this case we may say that J is a polygonal path joining, or connecting X_1 and X_{m+1}.

For any $k \in [1; m+1]$, X_k is the k-corner; for any $k \in [1; m]$, X_kX_{k+1} is the k-edge; and X_1, X_{m+1} are the endpoints of $\langle\langle X_1, \ldots, X_{m+1}\rangle\rangle$.

(2) Let J be a polygonal path; then I is a subpath of J iff I is a polygonal path and $I \subseteq J$. This means that every point of I is also a point of J.

(3) A polygonal path $\langle\langle X_1, \ldots, X_{m+1}\rangle\rangle$ is said to be simple iff for all members j and k of $[1; m]$, if $j + 1 < k$, then $X_jX_{j+1} \cap X_kX_{k+1} = \emptyset$.

(4) A subset E of the plane P is polygonally connected iff for every pair $\{A, B\}$ of distinct points in E there exists a polygonal path J with endpoints A and B such that $J \subseteq E$.

Remark PLGN.5.1 In this chapter we shall frequently be dealing with a ray \overrightarrow{AB} which intersects a set such as a polygon at a finite number of points. In such cases we will frequently speak of the first or last intersection of the ray with the other set. In such cases it will be understood that we are assuming an order relation $<$ to exist on the ray with $A < B$, and that the first and last points of intersection are those guaranteed by Lemma PLGN.3(1).

Remark PLGN.6 (A) The edges of a polygonal path intersect at the common endpoints of edges with adjacent indices, and if the path is simple,
adjacent edges will intersect only at their endpoints (for if two adjacent edges intersect at two points, their lines will be the same and there will be three successive collinear corners). If the path is not simple there will be pairs of non-adjacent edges intersecting, possibly at endpoints and possibly at other points.

(B) Any subpath of a simple polygonal path \(J \) is also simple.

(C) Let \(G = \langle X_1, \ldots, X_n \rangle \) be a polygon and let \(A \) and \(B \) be distinct points of \(G \) where \(A \in X_iX_{i+1} \) and \(B \in X_jX_{j+1} \) where \(i \leq j \). Then \(\langle A, X_{i+1}, \ldots, X_j, B \rangle \) is a polygonal path connecting \(A \) and \(B \). Thus every polygon is polygonally connected.

(D) If \(E \) and \(F \) are polygonally connected subsets of the plane and \(E \cap F \neq \emptyset \), then \(E \cup F \) is polygonally connected.

(E) Every convex set is polygonally connected.

(F) If \(G = \langle X_1, \ldots, X_n \rangle \) and \(F \) are simple polygons and \(F \subseteq G \), then \(F = G \).

Assertions (A) through (E) do not need extensive proof. We prove assertion (F).

(i) First we need to prove that if \(F \subseteq G \), every edge \(AB \) of \(F \) is a subset of some edge of \(G \). Since \(AB \) contains infinitely many points, and there are only finitely many edges of \(G \), some edge \(CD \) of \(G \) contains at least two points of \(AB \). Then \(AB \subseteq CD \) and \(AB \cap CD \) is a segment. If \(AB \nsubseteq CD \), then \(A \rightarrow C \rightarrow B \rightarrow D \) or \(A \rightarrow C \rightarrow D \rightarrow B \) or \(C \rightarrow A \rightarrow D \rightarrow B \).

We will prove the result for either of the first two cases; the proof in the last case is similar. There exists exactly one other edge \(CC' \) of \(G \) which intersects \(CD \) at the point \(C \), and \(C' \) cannot be collinear with \(C \) and \(D \), so that \(CC' \cap CD = \emptyset \). Let \(G' \) denote the union of all edges of \(G \) other than \(CD \) and \(CC' \). Then \(C \notin G' \). If the ray \(CA \) has empty intersection with \(G' \) then \(A \notin G' \) and, because \(A \notin CD \), \(A \notin G' \); this contradicts our assumption that \(F \subseteq G \). Otherwise, \(CA \) has a first point \(P \) of intersection with \(G' \) (by Theorem PLGN.4) and either \(A \rightarrow P \rightarrow C \rightarrow D \) or \(P \rightarrow A \rightarrow C \rightarrow D \). Choose \(Y \) so that both \(A \rightarrow Y \rightarrow C \) and \(P \rightarrow Y \rightarrow C \). Then \(Y \notin G' \); \(Y \notin CD \) so \(Y \notin G \) which is a contradiction because \(Y \in AB \subseteq G \). Hence \(AB \subseteq CD \).

(ii) If two edges of \(F \) intersect at some point, then the two edges of \(G \) that contain them must also intersect at the same point. Thus, every corner of \(F \) is a corner of \(G \), and since this is true, the endpoints of any edge of \(F \) are corners of \(G \) and every edge of \(F \) is an edge of \(G \).

(iii) It follows that the set of all edges belonging to both \(F \) and \(G \) is non-empty. If \(G \) has an edge \(X_iX_{i+1} \) that is not an edge of \(F \), let \(j \) be the smallest
integer such that \(j > i \) and \(X_j X_{j+1} \) is an edge of both \(F \) and \(G \). Now there must be a second edge \(AX_j \) of \(F \) intersecting \(X_j X_{j+1} \) at \(X_j \), but this second edge must be an edge of \(G \) which must therefore be \(X_{j-1} X_{j+1} \). Then \(X_{j-1} X_j \) is an edge of both \(F \) and \(G \), contradicting our choice of \(j \). \(\square \)

Theorem PLGN.7 (Simplification of a polygonal path) Let \(M = \langle \langle X_1, \ldots, X_{m+1} \rangle \rangle \) be any polygonal path joining \(X_1 \) and \(X_{m+1} \). Then there exists a simple subpath \(M' \) joining \(X_1 \) and \(X_{m+1} \).

Proof. We first define an ordering of \(M \). If \(P \) and \(Q \) are distinct points of \(M \), \(P < Q \) if and only if either

(a) \(P \in X_i X_{i+1} \) and \(Q \in X_j X_{j+1} \) and \(i < j \) (where \(X_i X_{i+1} \) and \(X_j X_{j+1} \) are edges of \(M \)), or

(b) \(P \) and \(Q \) belong to the same edge \(X_i X_{i+1} \) of \(M \) and either

\[
X_i < P < Q < X_{i+1}, \quad X = P = Q = X_{i+1}, \quad X_i < P = Q = X_{i+1}, \quad X_i = P \text{ and } X_{i+1} = Q
\]

(that is, the edge \(X_i X_{i+1} \) has the ordering of ORD.1 where \(X_i < X_{i+1} \)).

From Definition PLGN.5(B)(3) we see that the polygonal path \(M = \langle \langle X_1, \ldots, X_{m+1} \rangle \rangle \) is not simple iff for some members \(j \) and \(k \) of \([1; m]\), \(j + 1 < k \) and \(X_j X_{j+1} \cap X_k X_{k+1} \neq \emptyset \). Clearly this intersection will be a closed segment \(AB \), which may be degenerate, that is, a single point. Define a **loop point** to be an end point of a segment so defined. There are only finitely many such segments because the set of edges if finite, hence only finitely many loop points.

If \(A \) is a loop point of \(M \), there exists a sub-path \(\langle \langle A = Y_1, \ldots, Y_{r+1} = A \rangle \rangle \) of \(M \), called a **loop**, which joins \(A \) back to \(a \). A loop is a polygon, but is not necessarily simple. There are only finitely many such loops since there are only finitely many edges in \(M \).

Let \(A_1 \) be the first loop point, and let \(B_1 \) be the last point (in the ordering \(< \) of \(M \)) such that \(B_1 = A_1 \). Then there exists a polygonal path \(N_1 = \langle \langle A_1 = Y_1, \ldots, Y_{r+1} = B_1 = A_1 \rangle \rangle \) which is a subpath of \(M \), where at least \(Y_2, \ldots, Y_r \) are successive corners of \(M \).

Let \(M_1 = (M \setminus N_1) \cup \{A_1\} \). \(M_1 \) is a subpath of \(M \) connecting \(X_1 \) to \(X_{m+1} \) in which all loops connecting \(A_1 \) to \(A_1 \) have been eliminated. If \(M_1 \) is simple, the proof is complete. If not, the argument may be repeated as
needed to arrive at the conclusion by induction. □

Definition PLGN.8 Let G be a simple polygon $\langle X_1, \ldots, X_n \rangle$ and A and B be two distinct points of the plane with $A \notin G$. Then \overrightarrow{AB} is an **admissible ray** (for G) if it contains no corner of G. An angle $\angle BAC$ in the plane is an **admissible angle** if both \overrightarrow{AB} and \overrightarrow{AC} are admissible rays.

Remark PLGN.9 Let G be a simple polygon.

(A) The categories of “admissible” and “non-admissible” are applied only to rays \overrightarrow{AB} and angles $\angle BAC$ where $A \notin G$. Where there is only one polygon G in view, it will be convenient to speak of an admissible ray or angle without naming the polygon. In contexts of more than one polygon, we may find rays that are admissible for one polygon but not for another.

(B) If \overrightarrow{AB} is an admissible ray, no intersection of \overrightarrow{AB} with an edge of G satisfies either condition (2) or (3) of Lemma PLGN.1, because these imply that \overrightarrow{AB} contains a corner. Thus every edge of G either is disjoint from \overrightarrow{AB} (condition (0) of Lemma PLGN.1) or intersects \overrightarrow{AB} at exactly one point, as in condition (1) of this lemma. Since G has a finite number of edges, $\overrightarrow{AB} \cap G$ contains at most a finite number of points of G.

(C) Let A be any point of the plane. There are finitely many rays \overrightarrow{AX} that contain a corner of G and infinitely many that do not. Thus every point $A \notin G$ always has both admissible and non-admissible rays \overrightarrow{AB}, and the number of non-admissible rays is no greater than the number of corners of G.

(D) The following fact will make the statement of some theorems slightly more compact. If A is any point and E is a subset of the plane, there exists a point B such that $\overrightarrow{AB} \cap E = \emptyset$ iff there exists a point C such that $\overrightarrow{AC} \cap E = \emptyset$ (for if $\overrightarrow{AB} \cap E = \emptyset$ we may choose $C \in \overrightarrow{AB}$).

Remark PLGN.10 A main purpose of this and the next section (SEP) is to define the “inside” and “outside” of an arbitrary simple polygon G. It will be shown that either all the admissible rays from a point A not on G have an odd number of points of intersection with G (in which case we will define the **parity** of A to be odd), or they all have an even number of intersections (in which case the **parity** of A will be even). In the first case we will say that A is **inside** G, and in the second case it will be **outside**. This makes it possible to use a single “test” ray to determine whether A is inside or outside the polygon. What makes this work is that all intersections of an admissible ray with edges of a polygon are genuine **crossings** of the polygon.
This project could have been carried out by considering \textit{arbitrary} rays emanating from the point \(A \), not just admissible ones. That is, test rays might include corners of \(G \). This approach would add some complexity because it would necessitate deciding which intersections (including those cases where the ray contains a whole edge) are legitimate \textit{crossings} of \(G \) and should be counted. Intuitively, it is not hard to see that moving the ray over a little (cf Theorem PLGN.13) so as to avoid containing any corners will not affect the parity.

The main complexity in our approach of using only admissible rays arises from the unfortunate possibility that the most convenient ray for testing the parity of a point \(A \) might not be admissible. Lemma PLGN.11 through Theorem PLGN.13 are technical arguments which are useful in situations where the obvious test ray is not admissible, and an alternate test ray must be constructed.

\begin{lemma}
Let \(G \) be a simple polygon, and let \(A \) be any point of the plane.
\begin{enumerate}[(A)]
\item If \(A \notin G \) and \(X \neq A \) is arbitrarily chosen, then there exists a point \(Z \in AX \) such that \(AZ \cap G = \emptyset \).
\item if \(A \in G \) and if \(X \) is chosen so that \(AX \) contains no corner of \(G \), then there exists a point \(Z \in AX \) such that \(AZ \cap G = \emptyset \).
\end{enumerate}
\end{lemma}

\begin{proof}
See Figure 6.2. (A) This is Theorem PLGN.4(B).

(B) Assume that \(A \) is a member of the edge \(PQ \subseteq G \); we consider two cases:
\begin{enumerate}[(a)]
\item If \(P-A-Q \), then \(A \notin G \setminus \overline{PQ} \). Then we may apply Theorem PLGN.4 to \(AX \) and the union of all the edges of \(G \) other than \(PQ \), that is, \(G \setminus \overline{PQ} \), and
\end{enumerate}
\end{proof}
find that there exists a point \(Z \) such that \(\overrightarrow{AZ} \cap \overrightarrow{G} \setminus \overrightarrow{PQ} = \emptyset \). Since \(\overrightarrow{AX} \) contains no corner of \(G \), \(X \notin \overrightarrow{PQ} \), and hence \(\overrightarrow{AX} \cap \overrightarrow{PQ} = \{ A \} \) so \(\overrightarrow{AZ} \cap \overrightarrow{PQ} = \emptyset \), and the conclusion follows by elementary set theory.

(b) If \(A = P \), let \(\overrightarrow{RP} \) be the edge of \(G \) intersecting \(\overrightarrow{PQ} \) at \(P \); then

\[
\overrightarrow{AX} \cap \overrightarrow{RP} = \overrightarrow{AX} \cap \overrightarrow{PQ} = \{ P \}.
\]

Applying Theorem PLGN.4 to \(G \setminus (\overrightarrow{RP} \cup \overrightarrow{PQ}) \) we conclude that there exists a point \(Z \) such that

\[
\overrightarrow{AZ} \cap (G \setminus (\overrightarrow{RP} \cup \overrightarrow{PQ})) = \emptyset.
\]

But \(\overrightarrow{AZ} \cap (\overrightarrow{RP} \cup \overrightarrow{PQ}) = \emptyset \), since \(\overrightarrow{AX} \) contains no corner of \(G \), and the conclusion follows. A similar proof holds if \(A = Q \). \(\square \)

Theorem PLGN.12 Let \(E \) be an edge of a simple polygon \(G \); let \(A, B, \) and \(C \) be noncollinear points of the plane, and suppose that no corner of \(G \) belongs to \(\text{ins} \triangle ABC \) or to \(\overrightarrow{AC} \). If \(E \) intersects \(\overrightarrow{AC} \) in a singleton, then \(E \) intersects \(\overrightarrow{AB} \) or \(\overrightarrow{BC} \), but not both, and this intersection is a singleton.

Proof. Suppose that \(R \in E \cap \overrightarrow{AC} \) and \(L \) is the line containing \(E \). Then \(L \cap \overrightarrow{AC} = \{ R \} \). By Theorem PSH.6 and the Postulate of Pasch, either (a) \(\overrightarrow{BC} \cap L \neq \emptyset \), (b) \(\overrightarrow{AB} \cap L \neq \emptyset \), or (c) \(B \in L \).

In case (a) there is some point \(T \) such that \(L \cap \overrightarrow{BC} = \{ T \} \). If \(E \cap \overrightarrow{BC} = \emptyset \), then there exists a corner \(S \) of \(G \) with \(R \leftarrow S \rightarrow T \). Since \(R \in \overrightarrow{AC} \) and \(T \in \text{ins} \angle BAC \), it follows that \(S \in \text{ins} \angle BAC \). Also, since \(T \in \overrightarrow{BC} \), \(S \in \text{ins} \angle ACB \), so that \(S \in \text{ins} \triangle ABC \), a contradiction to the assumption that \(\text{ins} \triangle ABC \) contains no corner of \(G \). Therefore \(E \) intersects \(\overrightarrow{BC} \) at \(T \); by Specht Ch.1 Exercise I.1, the intersection is a singleton since \(L \neq \overrightarrow{BC} \).

In cases (b) and (c) similar arguments show that \(E \) intersects \(\overrightarrow{AB} \) or \(\{ B \} \) respectively, and the intersection is a singleton. \(\square \)

Corollary PLGN.12.1 Let \(E \) be an edge of a simple polygon \(G \); let \(A, B, \) and \(C \) be noncollinear points of the plane, and suppose that no corner of \(G \) belongs to \(\text{ins} \triangle ABC \) or to \(\overrightarrow{AC} \). If \(\overrightarrow{AC} \) intersects \(E \) but is not a subset of \(E \), then \(E \) intersects \(\overrightarrow{AB} \) or \(\overrightarrow{BC} \), but not both, and this intersection is a singleton.

Proof. Let \(R \) be a point of intersection of \(E \) and \(\overrightarrow{AC} \). If there are two points of intersection then by Exercise I.1 the line containing \(E \) is the same as \(\overrightarrow{AC} \), so that \(E \subseteq \overrightarrow{AC} \). By Specht Ch.4 Definition IB.3 \(A \leftarrow R \rightarrow C \).

By assumption, \(\overrightarrow{AC} \nmid E \). Thus there exists a point \(X \in \overrightarrow{AC} \) such that \(X \notin E \). Let \(E_1 \) and \(E_2 \) be the endpoints of \(E \) (which is a closed segment).
Neither E_1 or E_2 is a member of \overrightarrow{AC}, for by hypothesis no corner of \mathcal{G} can belong to this set. Since R is a member of \overrightarrow{AC}, neither $R = E_1$ nor $R = E_2$. Hence $E_1 \neq R \neq E_2$. Since $X \notin \mathcal{E}$, either $X = E_1 \neq R \neq E_2$ or $E_1 \neq R \neq E_2 = X$. In the first case, since both X and R are members of \overrightarrow{AC}, $E_1 \in \overrightarrow{AC}$ which contradicts our assumption that \overrightarrow{AC} contains no corner of \mathcal{G}. In the second case, $E_2 \in \overrightarrow{AC}$ which also yields a contradiction. It follows that there is only one point of intersection of \overrightarrow{AC} and \mathcal{E}, so that Theorem PLGN.12 applies, and the result follows. □

The following theorem allows the comparison of the number of intersections (with a simple polygon) of two specific admissible rays from two points, based on the intersections of the segment connecting them. It gives meaning to the idea of “moving a ray over a little” in order to get an admissible ray, and provides a basic tool needed to define the parity of a ray, and hence of a point.

Theorem PLGN.13 (Fudge theorem) Let \mathcal{G} be a simple polygon, and let $A \notin \mathcal{G}$ and B be distinct points of the plane, and let P be a point not in \overrightarrow{AB}. Then by Remark PLGN.9(C), there exists a point $Q \in$ the P-side of \overrightarrow{AB} such that \overrightarrow{BQ} contains no corner of \mathcal{G}.

Whenever this is true, there exists a point $D \in \overrightarrow{BQ}$ such that the following are all true:

(A) $\overrightarrow{BD} \cap \mathcal{G} = \emptyset$,

(B) the ray \overrightarrow{AD}, and indeed, every ray \overrightarrow{AX} with $X \in \overrightarrow{BD}$, is admissible, and no corner of \mathcal{G} belongs to $\text{ins} \angle DAB \cup \overrightarrow{AD}$, or to $\text{ins} \triangle DAB \cup \overrightarrow{AD}$, its subset;

(C) every edge E of \mathcal{G} that intersects \overrightarrow{AD} does so in a singleton, and also intersects \overrightarrow{AB}.

![Diagram](image)

Fig. 6.3 For Theorem PLGN.13.
Proof. See Figure 6.3. By Lemma PLGN.11(A), there exists a point \(Z \in \overline{BQ} \) such that \(\overline{BZ} \cap \mathcal{G} = \emptyset \). The set of all corners of \(\mathcal{G} \) on the \(P \)-side of \(\overline{AB} \) is finite (again by Remark PLGN.9(C)). Therefore the set \(\mathcal{C} = \{ Y \in \overline{BQ} | \overline{AY} \) contains a corner of \(\mathcal{G} \} \) is a finite set and may be ordered by Definition ORD.1 with \(B < Q \). By Theorem ORD.10 we may choose \(C \) as the least point belonging to \(\mathcal{C} \); choose \(D < \min\{C, Z\} \). Then \(\overline{BD} \subseteq \overline{BZ} \), which we have already seen to be disjoint from \(\mathcal{G} \), proving (A).

By our choice of \(D \), neither \(\overline{AD} \) nor any ray \(\overline{AY} \) where \(Y \in \overline{BD} \) can contain a corner of \(\mathcal{G} \). For any point \(W \in \text{ins} \angle DAB \), by Theorem PSH.29 (Crossbar), \(\overline{AW} \cap \overline{BD} \neq \emptyset \), so \(\overline{AW} \) cannot contain a corner of \(\mathcal{G} \). Therefore, \(\text{ins} \angle DAB \cup \overline{AD} \) cannot contain a corner of \(\mathcal{G} \), proving conclusion (B).

If some edge \(\mathcal{E} \) of \(\mathcal{G} \) were to intersect \(\overline{AD} \) in more than one point, it would be collinear with \(A \) and \(D \), and \(\overline{AD} \) would contain at least one endpoint of \(\mathcal{E} \) (a corner of \(\mathcal{G} \)) which is impossible by definition of \(D \); thus all the hypotheses of Theorem PLGN.12 are satisfied, and \(\mathcal{E} \) intersects \(\overline{AB} \), proving (C). \(\Box \)

Theorem PLGN.14 Let \(\overline{UV} \) be a segment in the plane, and let \(A, B, \) and \(C \) be noncollinear points of the plane where \(A \notin \overline{UV} \) and neither \(U \) nor \(V \) belongs to either ray of \(\angle BAC \). Let \(\angle < \) be an ordering of \(\overline{UV} \) defined by ORD.1 with \(U < V \). Then exactly one of the following holds:

1. \(\overline{UV} \) has empty intersection with \(\angle BAC \), in which case both \(U \) and \(V \) belong to \(\text{ins} \angle BAC \) or both belong to \(\text{out} \angle BAC \);
2. \(\overline{UV} \) has a single point \(P \) of intersection with \(\angle BAC \), in which case
 \[\overline{UP} \subseteq \text{ins} \angle BAC \text{ and } \overline{PV} \subseteq \text{out} \angle BAC, \text{ or} \]
 \[\overline{UP} \subseteq \text{out} \angle BAC \text{ and } \overline{PV} \subseteq \text{ins} \angle BAC; \text{ or} \]
3. \(\overline{UV} \) has exactly two points \(P \) and \(Q \) of intersection with \(\angle BAC \), in which case both \(U \) and \(V \) belong to \(\text{out} \angle BAC \) and \(\overline{PQ} \subseteq \text{ins} \angle BAC \). In this case if \(R \) is some point of \(\overline{PQ} \), \(\overline{PR} \) and \(\overline{RQ} \) are both subsets of \(\text{ins} \angle BAC \), while \(\overline{UP} \) and \(\overline{QV} \) are both subsets of \(\text{out} \angle BAC \).

Proof. First note that \(\overline{UV} \) cannot intersect the angle \(\angle BAC \) in more than two points, because then it would intersect one of the rays in two points and that ray would contain either \(U \) or \(V \). This shows that these alternatives are the only possibilities.

1. If \(U \) and \(V \) are on “opposite” sides of \(\angle BAC \) (that is, one is inside and the other outside), Theorem PSH.44 says that \(\overline{UV} \) must intersect the angle; thus, if there is no intersection, the two end points must both be inside or both be outside.
(2) From Theorem PSH.44(B), U and V have to be on "opposite sides" of $\angle BAC$; if $U \in \text{ins} \angle BAC$ and $X \in \overline{UP}$, by part (1) X also belongs to $\text{ins} \angle BAC$ so $\overline{UP} \subseteq \text{ins} \angle BAC$; the remaining assertions follow by similar arguments.

(3) See Figure 6.4. If there are exactly two points of intersection P and Q, they must lie on different rays of the angle (otherwise there would be more than two points of intersection). From Theorem PSH.37 the segment $\overline{PQ} \subseteq \text{ins} \angle BAC$; let R be a point with $P \rightarrow R \rightarrow Q$; then apply part (2) to the segments \overline{UR} and \overline{RV} separately. \hfill \Box

![Figure 6.4](image)

These segments are subsets of $\text{ins} \angle BAC$

Subset of $\text{out} \angle BAC$

Subset of $\text{out} \angle BAC$

Fig. 6.4 For Theorem PLGN.17 Alternative (3).

6.3 Separation (SEP)

In this section we begin to show that a simple polygon separates the plane into two regions. To signal this development we change our acronym to SEP.

Theorem SEP.1 Let $G = \bigcup_{j=1}^{n} \overline{X_jX_{j+1}}$ be a simple polygon on a Pasch plane; let $A \notin G$ and let $\angle BAC$ be an admissible angle for G. Then the number of intersections of $\angle BAC$ and G is even.

Proof. We start by constructing another set of segments $\overline{Y_iY_{i+1}}$ whose union is G.

For each segment $\overline{X_jX_{j+1}}$ which has two points P and Q of intersection with $\angle BAC$ (as in case (3)), we may choose the notation so that $X_j \rightarrow P \leftarrow Q \rightarrow X_{j+1}$. By Theorem PLGN.14 there exists a point R_j such that $P \rightarrow R_j \rightarrow Q$, so that $X_j \rightarrow P \rightarrow R_j \rightarrow Q \rightarrow X_{j+1}$. Then $\overline{X_jR_j \cap \angle BAC} = \{P\}$ and $\overline{R_jX_{j+1} \cap \angle BAC} = \{Q\}$.
Let E be the union of the set of points R_j so defined and the set of corners X_j; E is a finite subset of G. We rename the points of E by an inductive process as follows:

1. Let $Y_1 = X_1$; if the segment Y_1Y_2 does not intersect $\angle BAC$, or if it intersects $\angle BAC$ in exactly one point, define $Y_1 = X_2$. If $X_1X_2 \cap \angle BAC$ contains two points P and Q, define $Y_2 = R_1$ (as defined above), and $Y_3 = X_2$.

2. Suppose that for some $k \leq n$, X_k has been renamed as Y_i. If X_kX_{k+1} is disjoint from $\angle BAC$, or if it intersects $\angle BAC$ in exactly one point, define $Y_{i+1} = X_{k+1}$. If $X_kX_{k+1} \cap \angle BAC$ contains two points P and Q, define $Y_{i+1} = R_k$ and $Y_{i+2} = X_{k+1}$; then both the resulting segments intersect $\angle BAC$ in exactly one point.

Continue this renaming process until for some $m > 1$, $X_{n+1} = X_1$ has been renamed Y_{m+1}. Since $Y_1 = X_1$, $Y_{m+1} = Y_1$. Then $G = \bigcup_{i=1}^{m} Y_iY_{i+1}$, and each interval Y_iY_{i+1} intersects $\angle BAC$ in at most one point. Also, for each $i \in [1; m]$ define $Y_{i+m} = Y_i$, so that each point Y_i has two labels. The reason for making this second label will become apparent shortly.

We say a segment Y_iY_{i+1} is a passing segment iff it does not intersect $\angle BAC$. By Theorem PLGN.14(1), both end points of a passing segment are on the same side of $\angle BAC$—either both are in ins $\angle BAC$ or both are in out $\angle BAC$.

If a segment Y_iY_{i+1} is not a passing segment, it intersects $\angle BAC$ in exactly one point. We shall call such a segment a crossing segment. If Y_iY_{i+1} is a crossing segment, by Theorem PLGN.14(2) either $Y_i \in$ out $\angle BAC$ and $Y_{i+1} \in$ ins $\angle BAC$, in which case we will call it an entering segment, or $Y_i \in$ ins $\angle BAC$ and $Y_{i+1} \in$ out $\angle BAC$, in which case we call it an exiting segment. Thus, every segment Y_iY_{i+1} is either a passing or a crossing segment, and crossing segments come in two flavors, entering or exiting.

Now let Y_iY_{i+1} (where $i \in [1; m]$) be a crossing segment. If there is no other crossing segment Y_kY_{k+1}, all other segments are passing, and both Y_i and Y_{i+1} are on the same side of $\angle BAC$, a contradiction to Theorem PLGN.14(2). Therefore there exists at least one crossing segment Y_kY_{k+1} where $k \leq m$ such that $k \neq i$. Either $i < k$ or $k < i$; in the latter case, $k + m > i$; in either case there exists an integer $j \in [1; 2m]$ such that $i < j$ and Y_jY_{j+1} is a crossing segment. Let j be the smallest integer such that $i < j \leq 2m$ and Y_jY_{j+1} is crossing.

Informally, one may think of Y_jY_{j+1} as the first crossing segment encountered in a traversal from Y_iY_{i+1} in the direction of increasing indices.
If Y_iY_{i+1} is exiting, $Y_{i+1} \in \text{out } \angle BAC$; if there are passing segments Y_kY_{k+1} with $i < k < j$, both Y_k and Y_{k+1} are in $\text{out } \angle BAC$, so that $Y_j \in \text{out } \angle BAC$ and Y_jY_{j+1} must be an entering segment. By similar reasoning, if Y_iY_{i+1} is entering, $Y_{i+1} \in \text{ins } \angle BAC$, so that $Y_j \in \text{ins } \angle BAC$, and Y_jY_{j+1} must be exiting.

Thus, as the polygon is traversed in the direction of increasing indices of Y_i, each crossing segment is entering (exiting) iff both the next prior and next succeeding crossing segment are exiting (entering). Therefore the number of exiting segments is the same as the number of entering segments, and the total number of intersections of G with $\angle BAC$ is even.

We have “buried” the definitions of passing, crossing, entering, and exiting segments in the above proof because these notions are not used elsewhere in the development.

Definition SEP.2 Let G be a simple polygon and A a point not on G.

(A) Let AB be an admissible ray for G; if $AB \cap G$ contains an even number of members, the ray has **even parity** (relative to G). If it has an odd number of elements, the ray has **odd parity**. A ray that does not intersect G has even parity, because 0 is an even number.

(B) A point A has **odd (even) parity** with respect to G iff all admissible rays with endpoint A have odd (even) parity with respect to G.

(C) The **inside of G** (notation: $\text{ins } G$) is the set of points not on G which have odd parity with respect to G. The **outside of G** (notation: $\text{out } G$) is the set of points not on G which have even parity with respect to G.

(D) The **enclosure of G** (notation: $\text{enc } G$) is the union of G and $\text{ins } G$, or $G \cup \text{ins } G$.

(E) The **exclosure of G** (notation: $\text{exc } G$) is the union of G and $\text{out } G$, or $G \cup \text{out } G$.

(F) The inside or the outside of G is called a **side of G**. If Q is any point not on G, that is, $Q \in P \setminus G$, then the side of G to which Q belongs is called the Q-**side of G**. The inside and the outside of G are **opposite** sides of G.

The next theorem (which is really a corollary of Theorem SEP.1) shows that every point $A \notin G$ has a parity according to Definition SEP.2(B) above. It also shows that to determine the parity of a point, it is only necessary to determine the parity of a single ray starting from that point. Such a ray, used
to determine parity for A, may be referred to as a test ray for A.

Theorem SEP.3 Let G be a simple polygon on a Pasch plane, and let $A \notin G$; then the parity of any admissible ray \overrightarrow{AB} is the same as the parity of any other admissible ray \overrightarrow{AC}.

Proof. If the number of intersections of one ray of $\angle BAC$ with G is even while the number of intersections of the other ray with G is odd, the total number of intersections with $\angle BAC$ would be odd, contradicting Theorem SEP.1. Therefore the number of intersections of \overrightarrow{AB} with G is even (or odd) iff the number of intersections of \overrightarrow{AC} with G is even (or odd). \square

The following theorem will be invoked freely without reference in the proofs that follow.

Theorem SEP.4 Let G be a simple polygon and let A and B be points not on G.

(A) If the segment \overrightarrow{AB} contains no points of G then the parity of A equals the parity of B.

(B) If $\overrightarrow{AB} \cap G = \{R\}$ is a singleton, and R is not a corner of G, then the parities of A and B are different.

(C) If $\overrightarrow{AB} \cap G = \{R\}$ is a singleton, and $R = X_i$ is a corner of G, then A and B have the same parity if and only if $\overrightarrow{AB} \cap \text{ins } \angle X_{i-1}X_iX_{i+1} = \emptyset$.

(D) Suppose $\overrightarrow{AB} \cap G = \{R\}$ is a singleton. If $A \in \text{ins } G \text{ (out } G) \text{ then } \overrightarrow{AR} \subseteq \text{ins } G \text{ (out } G) \text{ and similarly for } B$.

Proof. (A) (Case I) If \overrightarrow{AB} is admissible, the number of intersections it has with G is the same as the number of intersections of the ray $\overrightarrow{AB} \setminus \overrightarrow{AB}$ so the parities of A and B are the same. A similar proof holds if \overrightarrow{BA} is admissible.

(Case II) See Figure 6.5 for a visualization. If neither \overrightarrow{AB} nor \overrightarrow{BA} is admissible, let P be a point not on \overrightarrow{AB} such that \overrightarrow{BP} is admissible. Then by Theorem PLGN.13 there exists a point $D \in \overrightarrow{BP}$ such that \overrightarrow{AD} is admissible, $\overrightarrow{BD} \cap G = \emptyset$, and every edge E of G that intersects \overrightarrow{AD} must also intersect \overrightarrow{AB}; but there are no edges intersecting \overrightarrow{AB}, so there are no edges of G that intersect \overrightarrow{AD}, and it follows that $\overrightarrow{AD} \cap G = \emptyset$. By Case I, A and D have the same parity, and D and B have the same parity.
The Jordan Curve Theorem for Polygons

If neither \overrightarrow{AB} or \overrightarrow{BA} is admissible, construct admissible rays \overrightarrow{AD} and \overrightarrow{BD} so that neither \overrightarrow{AD} or \overrightarrow{BD} contain points of \mathcal{G}.

Then by Case I, A, B, and D have the same parity.

Fig. 6.5 For Theorem SEP.4 (A) Case II.

(B) Let \mathcal{E} be the edge of \mathcal{G} containing R. If the line containing \mathcal{E} were the same as \overrightarrow{AB}, then since A and B do not belong to \mathcal{G}, \overrightarrow{AB} would contain an endpoint of \mathcal{E}, and the intersection would not be a singleton. Thus $\mathcal{E} \not\subseteq \overrightarrow{AB}$.

(Case I) If \overrightarrow{AB} is admissible then it has one more intersection with \mathcal{G} than does $\overrightarrow{AB} \setminus \overrightarrow{AB}$, so that the parities of A and B are different. A similar proof holds if \overrightarrow{BA} is admissible.

Fig. 6.6 For Theorem SEP.4 (B) Case II.

(Case II) See Figure 6.6. If neither \overrightarrow{AB} nor \overrightarrow{BA} is admissible, pick S to be an endpoint of the edge \mathcal{E} containing R. Note that $S \notin \overrightarrow{AB}$.

Let $P \in \overrightarrow{RS}$ be such that \overrightarrow{BP} is admissible. Then by Theorem PLGN.13 choose $D \in \overrightarrow{BP}$ so that $\overrightarrow{BD} \cap \mathcal{G} = \emptyset$, the ray \overrightarrow{AD} is admissible, and every
edge E' that intersects \overrightarrow{AD} also intersects \overrightarrow{AB}. Since there are no edges other than E which intersect \overrightarrow{AB}, no edge other than E can intersect \overrightarrow{AD}.

Claim: E intersects \overrightarrow{AD}. Note that by Theorem PSH.37, $D \in \text{ins} \angle BAP$, so that by the Crossbar Theorem PSH.39, \overrightarrow{AD} intersects \overrightarrow{BR} at some point $T \in E$. Now $R \in A$-side of \overrightarrow{BP}, and hence by Theorem IB.14, $\overrightarrow{FR} \subseteq A$-side of \overrightarrow{BP}, so T is also on the A-side of \overrightarrow{BP} and $T \in \overrightarrow{AD}$. This proves the claim.

Therefore exactly one edge, namely E, intersects \overrightarrow{AD}, and since \overrightarrow{AD} is admissible, by case I the parities of A and D are different. Since $\overrightarrow{BD} \cap G = \emptyset$, by part (A) the parities of B and D are the same; hence the parities of A and B are different.

(C) For this case we leave the construction of figures to the reader. Suppose that there is a point $Q \in \overrightarrow{AB} \cap \text{ins} \angle X_{i-1}X_iX_{i+1}$. Then X_iQ is a subset of the X_{i-1}-side of X_iX_{i+1} and of the X_{i+1}-side of X_iX_{i-1} and hence $X_iQ \subseteq \text{ins} \angle X_{i-1}X_iX_{i+1}$. Either A or B belongs to X_iQ and without loss of generality we may assume $A \in \text{ins} \angle X_{i-1}X_iX_{i+1}$. Then A, X_i, and X_{i+1} are not collinear and $X_{i+1} \notin \overrightarrow{AB}$.

Choose $P \in \overrightarrow{X_iX_{i+1}}$ so that \overrightarrow{BP} is admissible. By Theorem PLGN.13 there exists a point $D \in \overrightarrow{BP}$ such that $\overrightarrow{BD} \cap G = \emptyset$, \overrightarrow{AD} is admissible, and every edge that intersects \overrightarrow{AD} also must intersect \overrightarrow{AB}.

By Theorem PSH.37, $D \in \text{ins} \angle BAP$, so that by the Crossbar Theorem PSH.39, \overrightarrow{AD} intersects \overrightarrow{XP} at some point T, and $X_i \text{ ins } X_{i+1}$, so that T is not a corner of G. The only edges of G that intersect \overrightarrow{AB} are X_iX_{i-1} and $X_{i+1}X_i$; $X_{i-1}X_i$ is on the side of \overrightarrow{AB} opposite to D; therefore $\overrightarrow{X_iX_{i+1}}$ is the only edge intersecting \overrightarrow{AD}.

Since \overrightarrow{AD} is admissible, by part (B) A and D have different parities. By part (A) B and D have the same parity since $\overrightarrow{BD} \cap G = \emptyset$. Thus A and B have different parities. By the contrapositive, if A and B have the same parity, $\overrightarrow{AB} \cap \text{ins} \angle X_{i-1}X_iX_{i+1} = \emptyset$.

Conversely, assume that $\overrightarrow{AB} \cap \text{ins} \angle X_{i-1}X_iX_{i+1} = \emptyset$. If X_{i-1} and X_{i+1} are on opposite sides of \overrightarrow{AB}, then $\overrightarrow{X_{i-1}X_{i+1}}$ intersects \overrightarrow{AB} at a single point C by Axiom PSA, and $C \in \text{ins} \angle X_{i-1}X_iX_{i+1}$ by Theorem PSH.37. This contradicts our initial assumption, and X_{i-1} and X_{i+1} must be on the same side of \overrightarrow{AB}.

Let \mathcal{H} be the side of \overrightarrow{AB} opposite X_{i-1} and X_{i+1}, and let $P \in \mathcal{H}$ be such that \overrightarrow{BP} is admissible. By Theorem PLGN.13 there exists a point $D \in \overrightarrow{BP}$ such that $\overrightarrow{BD} \cap G = \emptyset$ and every edge of G intersecting \overrightarrow{AD} also intersects \overrightarrow{AB}.
By part (A) the parities of B and D are the same. There are two edges of G intersecting \overrightarrow{AB} at X_i, but both of these are disjoint from H. Hence no edge of G intersects \overrightarrow{AD} and by part (A) the parities of A and D are the same, so the parities of A and B are the same.

(D) \overrightarrow{AR} and \overrightarrow{BR} contain no points of G, so the result follows immediately from part (A). \quad \square

Corollary SEP.4.1 Let G be a simple polygon and let A and B be distinct points not on G. Then if the parities of A and B are different, $\overrightarrow{AB} \cap G \neq \emptyset$.

Proof. Contrapositive of Theorem SEP.4(A). \quad \square

Corollary SEP.4.2 Let G be a simple polygon and let A and B be distinct points not on G. Then if the parities of A and B are the same, $\overrightarrow{AB} \cap G$ is either a singleton which is a corner of G or is not a singleton. (The intersection could be empty, or it could contain two points, or a whole segment.)

Proof. Contrapositive of Theorem SEP.4(B). \quad \square

Remark SEP.5 Let G be a simple polygon or a polygonal path.

(A) Let A and B be distinct points not on G. Then if $\overrightarrow{AB} \cap G = \{P\}$ is a singleton which is a corner of G, it is possible for \overrightarrow{AP} and \overrightarrow{BP} to both be subsets of the inside, or both subsets of the outside of G.

(B) Let A, B, and C be any points with $\overrightarrow{AC} \cap G = \emptyset$. Then $\overrightarrow{AB} \cap G = \{C\}$ if and only if $C \in G$ and $\overrightarrow{AC} \cap G = \emptyset$ and $\overrightarrow{BC} \cap G = \emptyset$.

Theorem SEP.6 Let C and D be distinct points, with $C \in \overrightarrow{X_iX_{i+1}}$, an edge of a simple polygon G. If either

1. C is not a corner of G and $D \notin \overrightarrow{X_iX_{i+1}}$, or
2. $C = X_i$, a corner of G, and $D \notin \angle X_{i-1}X_iX_{i+1}$,

then there exists a point $E \in \overrightarrow{CD}$ such that $E \neq C$ and $\overrightarrow{EC} \cap G = \{C\}$.

Proof. (1) If $\overrightarrow{CD} \cap \overrightarrow{X_iX_{i+1}} = \emptyset$, let $E = D$. Otherwise apply Theorem PLGN.4 to the ray \overrightarrow{CD} with $C < D$; let F be the first intersection of \overrightarrow{CD} and $G \setminus \overrightarrow{X_iX_{i+1}}$, and let $E < \min\{F, D\}$. Then $\overrightarrow{EC} \cap G = \{C\}$.

(2) The proof is the same except that we choose F to be the first intersection of \overrightarrow{CD} and $G \setminus (\overrightarrow{X_{i-1}X_i} \cup \overrightarrow{X_iX_{i+1}})$. \quad \square
Theorem SEP.7

Let C be any point on the edge $\overrightarrow{X_iX_{i+1}}$ of a simple polygon \mathcal{G}, and let \mathcal{L} be a line through C. If either

1. C is not a corner of \mathcal{G} and \mathcal{L} is different from $\overrightarrow{X_iX_{i+1}}$, or
2. $C = X_i$, a corner of \mathcal{G} (endpoint of $\overrightarrow{X_iX_{i+1}}$), and \mathcal{L} contains at least one point of $\text{ins} \angle X_{i-1}X_iX_{i+1}$;

then there exist points E_1 and $E_2 \in \mathcal{L}$ such that

(a) $E_1 \overrightarrow{CE_2}$,
(b) $\overrightarrow{E_1E_2} \cap \mathcal{G} = \{C\}$,
(c) $\overrightarrow{E_1C} \subseteq \text{ins} \mathcal{G}$, and
(d) $\overrightarrow{E_2C} \subseteq \text{out} \mathcal{G}$.

Fig. 6.7 For Theorem SEP.7.

Proof. See Figure 6.7. (1) If $\overrightarrow{X_iX_{i+1}} \cap \mathcal{L}$ contains more than one point, then $\overrightarrow{X_iX_{i+1}} = \mathcal{L}$ by Axiom I.1; therefore $\overrightarrow{X_iX_{i+1}} \cap \mathcal{L} = \{C\}$, a singleton. Let P and Q be points of \mathcal{L} such that $P \overrightarrow{CQ}$. Then since P and Q are not in $\overrightarrow{X_iX_{i+1}}$ by Theorem SEP.6(1) there exist points E_1 and E_2 such that $C \overrightarrow{E_1P}$, $C \overrightarrow{E_2Q}$, $\overrightarrow{E_1C} \cap \mathcal{G} = \{C\}$ and $\overrightarrow{E_2C} \cap \mathcal{G} = \{C\}$. This shows conclusions (a) and (b).

Theorem SEP.4(A) says that every point in $\overrightarrow{CE_1}$ has the same parity, and likewise for $\overrightarrow{CE_2}$. By Theorem SEP.4(B) the parity of E_1 is different from the parity of E_2, so that with appropriate re-labeling, $E_1 \in \text{ins} \mathcal{G}$ and conclusions (c) and (d) follow.

(2) The proof is similar to that for part (1). Let P be a point on \mathcal{L} belonging to $\text{ins} \angle X_{i-1}X_iX_{i+1}$ and let $Q \overrightarrow{CP}$. Then Q is on the side of $\overrightarrow{X_iX_{i+1}}$ opposite X_{i-1} and $Q \in \text{out} \angle X_{i-1}X_iX_{i+1}$ by Theorem PSH.41(C). Since neither P nor Q is on $\angle X_{i-1}X_iX_{i+1}$ we may apply Theorem SEP.6(2) to show conclusions (a) and (b).
As before, every point in $\overrightarrow{E_1C}$ has the same parity, and likewise for $\overrightarrow{E_2C}$. By SEP.4(C) the parity of E_1 is different from the parity of E_2, so that with appropriate re-labeling, $E_1 \in \text{ins} \mathcal{G}$ and conclusions (c) and (d) follow. \Box

Corollary SEP.7.1 For any point C of a simple polygon \mathcal{G}, points E_1 and E_2 can be chosen so that conclusions (a) through (d) of Theorem SEP.7 are satisfied and the line $\overrightarrow{E_1E_2}$ contains no corner of the polygon \mathcal{G}, other than the point C in the case that C is a corner of \mathcal{G}.

Proof. Suppose $C \in \overrightarrow{X_iX_{i+1}}$, an edge of \mathcal{G}. Infinitely many lines \overrightarrow{CP} may be generated where $P \in \text{ins} \angle X_{i-1}X_iX_{i+1}$, and since there are only finitely many corners, we may choose P so that \overrightarrow{CP} contains no corner other than possibly C. Then let $L = \overrightarrow{CP}$, and apply Theorem SEP.7. \Box

Corollary SEP.7.2 For any simple polygon \mathcal{G}, both $\text{ins} \mathcal{G} \neq \emptyset$ and $\text{out} \mathcal{G} \neq \emptyset$.

Theorem SEP.8 Suppose S is a nonempty subset of the Pasch plane \mathcal{P}, and T_1 and T_2 are subsets of \mathcal{P} such that $\mathcal{P} = T_1 \cup T_2 \cup S$ and T_1, T_2, and S are pairwise disjoint. Then the following are equivalent statements:

(a) For every $M_1 \in T_1$ and every $M_2 \in T_2$, $\overrightarrow{M_1M_2} \cap S \neq \emptyset$.

(b) For every $M_1 \in T_1$ and every $M_2 \in T_2$, every simple polygonal path $\langle \langle M_1, X_2, \ldots, X_m, M_2 \rangle \rangle$ connecting M_1 and M_2 intersects S.

Proof. Assume (a) is true. Let $N_1 \in T_1$, $N_2 \in T_2$, and suppose further that $\langle \langle N_1, X_2, \ldots, X_m, N_2 \rangle \rangle$ is any simple polygonal path connecting N_1 and N_2. For convenience rename these corners by letting $Y_1 = N_1$, $Y_i = X_i$ for all $i \in [2, m]$, and $Y_{m+1} = N_2$.

If some corner $Y_2, \ldots, Y_m \in S$ then the path intersects S. If none of the corners $Y_2, \ldots, Y_m \in S$ then all the corners belong either to T_1 or T_2. Since $N_1 \in T_1$ and $N_2 \in T_2$, the set of all corners belonging to T_1 and the set of all corners belonging to T_2 are both non-empty. Let Y_i be that corner belonging to T_2 having the smallest index. Then $Y_i \neq N_1$, $i \geq 2$, and $Y_{i-1} \in T_1$. Since $Y_{i-1} \in T_1$ and $Y_i \in T_2$, by assumption $\overrightarrow{Y_{i-1}Y_i} \cap S \neq \emptyset$, so that $\langle \langle N_1, X_2, \ldots, X_m, N_2 \rangle \rangle$ intersects S.

The converse is obvious since the segment $\overrightarrow{M_1M_2}$ is a simple polygonal path joining M_1 and M_2. \Box
6.3 Separation (SEP) 137

Remark SEP.9 The statement “for any \(M_1 \in T_1\) and any \(M_2 \in T_2\), some polygonal path \(\langle\langle M_1, X_2, \ldots, X_m, M_2\rangle\rangle\) connecting \(M_1\) and \(M_2\) intersects \(S\)” is not equivalent to the equivalent statements (a) and (b) in Theorem SEP.8. A counterexample is shown in Figure 6.8.

![Diagram](image)

For any \(M_1 \in T_1\) and any \(M_2 \in T_2\) there is a polygonal path connecting \(M_1\) and \(M_2\) that intersects \(S\), but not every such path does so.

Fig. 6.8 For Remark SEP.9.

Definition SEP.10 A nonempty subset \(S\) of the Pasch plane \(P\) separates \(P\) into two subsets \(T_1\) and \(T_2\) if and only if

1. \(P = T_1 \cup T_2 \cup S\),
2. \(T_1\) and \(T_2\) and \(S\) are pairwise disjoint, and
3. for all \(M_1 \in T_1\) and \(M_2 \in T_2\), \(M_1 M_2 \cap S \neq \emptyset\).

Informally, we may say that \(S\) separates the plane into two parts \(T_1\) and \(T_2\), or more briefly, \(S\) separates the plane.

Remark SEP.11 By Theorem SEP.8, \(S\) separates the plane into the two parts \(T_1\) and \(T_2\) iff conditions (1) and (2) (of SEP.8) hold and every simple polygonal path joining two points \(M_1 \in T_1\) and \(M_2 \in T_2\) intersects \(S\).

Theorem SEP.12 (Proof of Theorem JCT.1, parts (A) and (B))

A simple polygon \(G\) separates the plane \(P\) into two parts, \(\text{ins } G\) and \(\text{out } G\).

Proof. By Definition SEP.3(C) \(\text{ins } G\) and \(\text{out } G\) are disjoint sets, both of which are disjoint from \(G\), and \(P = \text{ins } G \cup \text{out } G \cup G\), thus satisfying conditions (1) and (2) of Definition SEP.10. Let \(M_1 \in \text{ins } G\) and \(M_2 \in \text{out } G\). Then \(M_1\) and \(M_2\) have different parities, and hence \(M_1 M_2\) must intersect \(G\), by Corollary SEP.4.1, so that condition (3) follows. \(\square\)

Theorem SEP.13 (A) If \(E\) is a polygonally connected set and \(G\) is a simple polygon such that \(E \cap G = \emptyset\), then either \(E \subseteq \text{ins } G\) or \(E \subseteq \text{out } G\). In
other words, all points of \(E \) have the same parity relative to \(G \). Notice that this is a generalization of Theorem SEP.4(A).

(B) If \(E \) is a convex set and \(G \) is a simple polygon such that \(E \cap G = \emptyset \), then either \(E \subseteq \text{ins} \ G \) or \(E \subseteq \text{out} \ G \).

(C) If \(F \) and \(G \) are simple polygons and \(F \cap G = \emptyset \), then \(F \subseteq \text{ins} \ G \) or \(F \subseteq \text{out} \ G \).

(D) If \(F \) and \(G \) are simple polygons and \(F \cap \text{ins} \ G \neq \emptyset \) and \(F \cap \text{out} \ G \neq \emptyset \), then \(F \cap G \neq \emptyset \).

Proof. (A) Let \(P \) and \(Q \) be two points of \(E \) which are connected by a polygonal path \(\langle \langle P = X_1, X_2, \ldots, X_m, X_{m+1} = Q \rangle \rangle \subseteq E \). Then by Theorem SEP.4(A), \(P = X_1 \) has the same parity as \(X_2 \), and a simple induction argument shows that \(P \) has the same parity as \(Q \).

(B) Immediate from part (A) since every convex set is polygonally connected.

(C) Immediate from part (A) and Remark PLGN.6(C).

(D) Since \(F \) is polygonally connected, there is a polygonal path in \(F \) connecting a point of \(\text{ins} \ G \) with a point of \(\text{out} \ G \), and this polygonal path must contain a point of \(G \) by Theorem SEP.12. \(\square \)

Theorem SEP.14 If \(F \) and \(G \) are simple polygons and \(F \cap G = \emptyset \), exactly one of the following holds:

1. \(G \subseteq \text{ins} \ F \) and \(F \subseteq \text{out} \ G \), in which case
 - \(\text{exc} \ F = F \cup \text{out} \ F \) is a proper subset of \(\text{out} \ G \), and
 - \(\text{enc} \ G = G \cup \text{ins} \ G \) is a proper subset of \(\text{ins} \ F \); or
2. \(F \subseteq \text{ins} \ G \) and \(G \subseteq \text{out} \ F \), in which case
 - \(\text{exc} \ G = G \cup \text{out} \ G \) is a proper subset of \(\text{out} \ F \), and
 - \(\text{enc} \ F = F \cup \text{ins} \ F \) is a proper subset of \(\text{ins} \ G \); or
3. \(G \subseteq \text{out} \ F \) and \(F \subseteq \text{out} \ G \), in which case
 - \(\text{enc} \ G = G \cup \text{ins} \ G \) is a proper subset of \(\text{out} \ F \) and
 - \(\text{exc} \ F = F \cup \text{ins} \ F \) is a proper subset of \(\text{out} \ G \).

The remaining logical possibility, (4) \(G \subseteq \text{ins} \ F \) and \(F \subseteq \text{ins} \ G \), is impossible.

Proof. By Theorem SEP.13(C) each of \(F \) and \(G \) must be a subset of either the inside or the outside of the other. The alternatives (1) through (4) above are the only logical possibilities. Figure 6.9 below illustrates the proof that alternative (4) is impossible.
Proof that (4) is impossible. Suppose that $\mathcal{G} \subseteq \text{ins} \mathcal{F}$ and $\mathcal{F} \subseteq \text{ins} \mathcal{G}$. Let $P \in \text{ins} \mathcal{G}$, and let A be a point such that \overrightarrow{PA} contains no corner of \mathcal{F} or \mathcal{G}. Order \overrightarrow{PA} by Definition ORD.1 with $P < A$. By Definition SEP.3 \overrightarrow{PA} has a non-empty intersection with \mathcal{G} and by Theorem PLGN.4(A) there is a last intersection Q of \mathcal{G} with \overrightarrow{PA}. Since $\mathcal{G} \subseteq \text{ins} \mathcal{F}$, $Q \in \text{ins} \mathcal{F}$ so that the ray $\overrightarrow{PA} \setminus \overrightarrow{PQ}$ intersects \mathcal{F} and there is a last intersection R of \mathcal{F} with $\overrightarrow{PA} \setminus \overrightarrow{PQ}$, and $Q \neq R$ since $Q \in \text{ins} \mathcal{F}$, and $R \in \mathcal{F}$, whence $Q < R$.

Since $R \in \mathcal{F} \subseteq \text{ins} \mathcal{G}$, the ray $\overrightarrow{PA} \setminus \overrightarrow{PR}$ intersects \mathcal{G} at some point S. $S \neq R$ since $R \in \text{ins} \mathcal{G}$ and $S \in \mathcal{G}$ whence $Q < R < S$. This contradicts the fact that Q is the last intersection of \overrightarrow{PA} with \mathcal{G}, so that alternative (4) is impossible.

To visualize the other alternatives, see Figure 6.10 below.

Fig. 6.10 For proof that alternate (4) is impossible.

If alternative (1) is true: We assume that $\mathcal{G} \subseteq \text{ins} \mathcal{F}$ and $\mathcal{F} \subseteq \text{out} \mathcal{G}$.

(a) First we show that $\text{out} \mathcal{F} \subseteq \text{out} \mathcal{G}$. Let M be any point of $\text{out} \mathcal{F}$ and let H be any other point such that \overrightarrow{MH} contains no corner of \mathcal{F} or \mathcal{G}.

Note that $M \notin \mathcal{G}$ since $M \in \text{out} \mathcal{F}$, which is disjoint from $\text{ins} \mathcal{F} \supseteq \mathcal{G}$. Suppose now \overrightarrow{MH} does not intersect \mathcal{F}. If \overrightarrow{MH} should intersect \mathcal{G} at M', then the point $M' \in \text{ins} \mathcal{F}$ and $M \in \text{out} \mathcal{F}$, so by Theorem SEP.12 there is a
point of \mathcal{F} belonging to $\overline{MM'} \subseteq \overline{MH}$ which is impossible. Hence $\overline{MH} \cap G = \emptyset$, the parity of M (relative to G) is even and $M \in \text{out } G$.

Now suppose that \overline{MH} intersects \mathcal{F}. Order \overline{MH} by Definition ORD.1 with $M < H$. By Theorem PLGN.4(A) there exists a first point N of intersection of \overline{MH} with \mathcal{F}, and since $\mathcal{F} \subseteq \text{out } G$, $N \in \text{out } G$. Now $\overline{MN} \subseteq \mathcal{F}$ (by Theorem SEP.4(A)), and $\overline{MN} \cap G = \emptyset$ because $G \subseteq \text{ins } \mathcal{F}$. Since neither M nor N belongs to G, and $N \in \text{out } G$, it follows from SEP.4(A) that $M \in \text{out } G$. Therefore $\overline{MN} \subseteq \text{out } \mathcal{F}$ and since $\mathcal{F} \subseteq \text{out } G$, $\mathcal{F} \cup \text{out } \mathcal{F} \subseteq \text{out } G$.

![Figure 6.11](image.png)

(b) See Figure 6.11. We prove next that $\text{ins } G \subseteq \text{ins } \mathcal{F}$. Let P be any point of $\text{ins } G$ and let A be any other point such that \overrightarrow{PA} contains no corner of \mathcal{F} or G. We know that \overrightarrow{PA} must intersect G, and ordering \overrightarrow{PA} with $P < A$, there exists a first point Q of intersection of G and \overrightarrow{PA}.

\overrightarrow{PQ} contains no point of G other than Q, so $\overrightarrow{PQ} \subseteq \text{ins } G$ (SEP.4) which is disjoint from $\mathcal{F} \subseteq \text{out } G$. $Q \in \text{ins } \mathcal{F}$ because $G \subseteq \text{ins } \mathcal{F}$, so $Q \notin \mathcal{F}$, hence \overrightarrow{PQ} contains no point of \mathcal{F}. Since $Q \in G \subseteq \text{ins } \mathcal{F}$, it follows from SEP.4(A) that $P \in \text{ins } \mathcal{F}$. This proves that $\text{ins } G \subseteq \text{ins } \mathcal{F}$, and since $G \subseteq \text{ins } \mathcal{F}$ it follows that $G \cup \text{ins } G \subseteq \text{ins } \mathcal{F}$.

(c) Finally, we show the inclusions $G \cup \text{ins } G \subseteq \text{ins } \mathcal{F}$ and $\mathcal{F} \cup \text{out } \mathcal{F} \subseteq \text{out } G$ are proper. Continue the construction of the immediately previous paragraphs (illustrated by the figure) as follows: let R be the last point of intersection of G and \overrightarrow{PA}, so that $R \in G \subseteq \text{ins } \mathcal{F}$, and by Theorem PLGN.4 (since the parity of R relative to \mathcal{F} is odd) there exists a first point S of intersection of \mathcal{F} and the ray $\overrightarrow{PA} \setminus \overrightarrow{PR}$.

Since $\overline{RS} \cap \mathcal{F} = \overline{RS} \cap G = \emptyset$, all points of the segment \overline{RS} have the same parity with respect to \mathcal{F} as does R (by SEP.4), which belongs to $G \subseteq \text{ins } \mathcal{F}$, so $\overline{RS} \subseteq \text{ins } \mathcal{F}$. Also the ray $\overrightarrow{PQ} \setminus \overrightarrow{PR}$ is disjoint from G so that $\overline{RS} \subseteq \text{out } G$.

This shows that there are points of ins F which are not in ins G, and also that there are points of out G that are not points of out F. This completes the proof of (1).

If alternative (2) is true: The proof is the same as that for (1) with F and G interchanged.

If alternative (3) is true: We assume that $G \subseteq \text{out} F$ and $F \subseteq \text{out} G$.

First we prove that ins $G \subseteq \text{out} F$. Let P be any point of ins G, and let A be any point such that \overrightarrow{PA} does not contain a corner of F or G. $P \in \text{ins} G$ so that every ray from P must intersect G at least once. Order \overrightarrow{PA} with $P < A$, and let Q be the first point and R the last point of intersection of \overrightarrow{PA} with G.

(a) If the ray $\overrightarrow{PA} \setminus \overrightarrow{PR}$ intersects F let S be the first point of intersection of $\overrightarrow{PA} \setminus \overrightarrow{PR}$ with F, otherwise (b) let S be any point of $\overrightarrow{PA} \setminus \overrightarrow{PR}$. Then \overrightarrow{PQ} contains no point of G other than Q so that $\overrightarrow{PQ} \subseteq \text{ins} G$ and hence contains no point of F since $F \subseteq \text{out} G$. Now $Q \in G \subseteq \text{out} F$, so $P \in \text{out} F$ by Theorem SEP.4(A). Therefore ins $G \subseteq \text{out} F$.

Finally we show that ins $G \subseteq \text{out} F$ is a proper inclusion. The construction is similar to that shown in the figure for part (1) above, the only difference being that now F does not “enclose” G. In this construction, the segment \overrightarrow{RS} contains no point of G since R is the last point of G, and no point of F since S is the first point of F with $R < S$. By Theorem SEP.4(A), since $R \in G \subseteq \text{out} F$, $\overrightarrow{RS} \subseteq \text{out} F$; similarly since $S \in \text{out} G$, $\overrightarrow{RS} \subseteq \text{out} G$. Thus points of \overrightarrow{RS} are in out F but not in $G \cup \text{ins} G$, and hence the inclusion $G \cup \text{ins} G \subseteq \text{out} F$ is proper.

By exactly the same argument, with the roles of F and G interchanged, $F \cup \text{ins} F \subseteq \text{out} G$ is also a proper inclusion. □

Theorem SEP.15 If F and G are simple polygons and $F \cap G$ is a segment \overrightarrow{CD}, then both $F \setminus \overrightarrow{CD}$ and $G \setminus \overrightarrow{CD}$ are polygonally connected sets. By Theorem SEP.13

(A) either $G \setminus \overrightarrow{CD} \subseteq \text{ins} F$ or $G \setminus \overrightarrow{CD} \subseteq \text{out} F$, and

(B) either $F \setminus \overrightarrow{CD} \subseteq \text{ins} G$ or $F \setminus \overrightarrow{CD} \subseteq \text{out} G$.

Thus there are four mutually exclusive logical possibilities as follows:

1. $G \setminus \overrightarrow{CD} \subseteq \text{ins} F$ and $F \setminus \overrightarrow{CD} \subseteq \text{out} G$, in which case out F is a proper subset of out G, and ins G is a proper subset of ins F; or

2. $F \setminus \overrightarrow{CD} \subseteq \text{ins} G$ and $G \setminus \overrightarrow{CD} \subseteq \text{out} F$, in which case out G is a proper subset of out F, and
ins F is a proper subset of ins G; or

(3) $G \setminus \overline{CD} \subseteq \text{out } F$ and $F \setminus \overline{CD} \subseteq \text{out } G$, in which case

ins G is a proper subset of out F, and

ins F is a proper subset of out G.

The remaining logical possibility (4) $G \setminus \overline{CD} \subseteq \text{ins } F$ and $F \setminus \overline{CD} \subseteq \text{ins } G$, is impossible.

\[\text{Fig. 6.12 For Theorem SEP.15.}\]

Proof. See Figure 6.12 above. Most parts of the proof are essentially the same as the corresponding parts of the proof of Theorem SEP.14, with the following exceptions:

(a) Since F and G are not disjoint, we cannot prove the same set of inclusions as in SEP.14, e.g. $G \cup \text{ins } G$ is a proper subset of ins F—we can only show that ins G is a proper subset of ins F, etc.

(b) When constructing a ray \overrightarrow{PA}, say from a point $P \in \text{ins } G$, we must choose A so that \overrightarrow{PA} is disjoint from \overline{CD} and intersections of the ray with either F or G will belong to $F \setminus \overline{CD}$ or to $G \setminus \overline{CD}$. We formalize this idea as follows.

Lemma Let C, D, P, and A be points such that $P \notin \overrightarrow{CD}$. If the point $A \in \text{out } \angle CPD$, then

(1) $\overrightarrow{PA} \cap \overline{CD} = \emptyset$;

(2) if G is a simple polygon and $\overline{CD} \subseteq G$, $\overrightarrow{PA} \cap G \subseteq G \setminus \overline{CD}$; and

(3) a point X of $\overrightarrow{PA} \notin G$ if and only if $X \notin G \setminus \overline{CD}$.

Proof. (1) By Theorem PSH.41(C) either A belongs to the side of \overrightarrow{PD} opposite C or to the side of \overrightarrow{PC} opposite D, and by Theorem IB.14 \overrightarrow{PA} will be on the same side and hence $\overrightarrow{PA} \subseteq \text{out } \angle CPD$. Therefore no point of \overrightarrow{PA} belongs to \overline{CD}, since $\overline{CD} \subseteq \text{ins } \angle CPD$ by Theorem PSH.37.
Conclusions (2) and (3) are obvious consequences of conclusion (1). □

We now return to the proof of Theorem SEP.15.

Proof that alternative (4) is impossible. We repeat the proof that alternative (4) of Theorem SEP.14 is impossible, altering that proof by choosing the point \(A \) to lie in \(\angle CPD \). Then by the Lemma, all the intersections of the ray \(\overrightarrow{PA} \) with \(F \) and \(G \) lie in the sets \(F \setminus \overrightarrow{CD} \) and \(G \setminus \overrightarrow{CD} \) respectively, so that the proof from SEP.14 suffices.

If alternative (1) is true: \(G \setminus \overrightarrow{CD} \subseteq \text{ins } F \) and \(F \setminus \overrightarrow{CD} \subseteq \text{out } G \).

(a) First we show that \(\text{out } F \subseteq \text{out } G \). Let \(M \) be any point of \(\text{out } F \) and let \(H \) be any point with \(H \neq M \) with \(H \in \text{out } \angle CMD \), such that \(\overrightarrow{MH} \) contains no corner of \(F \) or \(G \).

Note that \(M \notin G \subseteq \text{ins } F \) since \(M \in \text{out } F \), which is disjoint from \(\text{ins } F \supseteq G \). If \(\overrightarrow{MH} \) does not intersect \(F \) the proof is identical to the proof in SEP.14. If \(\overrightarrow{MH} \) intersects \(F \), we order \(\overrightarrow{MH} \) by Definition ORD.1 with \(M < H \). By Theorem PLGN.4(A) there exists a first point \(N \) of intersection of \(\overrightarrow{MH} \) with \(F \), and since \(N \notin \overrightarrow{CD} \) by the Lemma, and \(F \setminus \overrightarrow{CD} \subseteq \text{out } G \), \(N \in \text{out } G \).

Now \(\overrightarrow{MN} \cap F = \emptyset \) so that \(\overrightarrow{MN} \subseteq \text{out } F \) (by Theorem SEP.4(A)), and \(\overrightarrow{MN} \cap G = \emptyset \) because \(G \setminus \overrightarrow{CD} \subseteq \text{ins } F \) and \(\overrightarrow{MH} \cap \overrightarrow{CD} = \emptyset \). Since neither \(M \) nor \(N \) belongs to \(G \), and \(N \in \text{out } G \), it follows from Theorem SEP.4(A) that \(M \in \text{out } G \). Therefore \(\text{out } F \subseteq \text{out } G \).

(b) Next we prove that \(\text{ins } G \subseteq \text{ins } F \). (See Figure 6.13 above for an illustration of this case.) Let \(P \) be any point of \(\text{ins } G \setminus \overrightarrow{CD} \) and let \(A \) be any other point where \(A \in \text{out } \angle CPD \) (so that \(\overrightarrow{PA} \cap \overrightarrow{CD} = \emptyset \) by the Lemma) and \(\overrightarrow{PA} \) contains no corner of \(F \) or \(G \). Ordering \(\overrightarrow{PA} \) with \(P < A \), there exists a first
point \(Q \) of intersection of \(G \) and \(\overrightarrow{PA} \). \(Q \not\in CD \) and since \(G \setminus CD \subseteq \text{ins} \ F \), \(Q \in \text{ins} \ F \). Now the segment \(\overrightarrow{PQ} \) contains no point of \(G \) so \(\overrightarrow{PQ} \subseteq \text{ins} \ G \) (SEP.4) which is disjoint from \(F \setminus CD \) because \(F \setminus CD \subseteq \text{out} \ G \), and hence \(\overrightarrow{PQ} \) contains no point of \(F \). It follows from SEP.4(A) that \(P \in \text{ins} \ F \), proving that \(\text{ins} \ G \subseteq \text{ins} \ F \).

(c) Finally, we show that the inclusions \(\text{out} \ F \subseteq \text{out} \ G \), and \(\text{ins} \ G \subseteq \text{ins} \ F \) are proper. Continue the construction of the previous paragraphs (illustrated by Figure 6.13) as follows: let \(R \) be the last point of intersection of \(G \) and \(\overrightarrow{PA} \), and since \(R \notin CD \) and thus \(R \in G \setminus CD \subseteq \text{ins} \ F \), by Theorem PLGN.4(A) there exists a first point \(S \) of intersection of \(F \setminus CD \) and the ray \(\overrightarrow{PA} \setminus \overrightarrow{PR} \).

Since \(RS \cap F = RS \cap G = \emptyset \), all points of the segment \(RS \) have the same parity with respect to \(F \) as does \(R \) (by SEP.4), which belongs to \(G \setminus CD \subseteq \text{ins} \ F \), so \(RS \subseteq \text{ins} \ F \). Also the ray \(\overrightarrow{PA} \setminus \overrightarrow{PR} \) is disjoint from \(G \) so that \(RS \subseteq \text{out} \ G \). This shows that there are points of \(\text{ins} \ F \) which are not in \(\text{ins} \ G \), and also that there are points of \(\text{out} \ G \) that are not points of \(\text{out} \ F \). This completes the proof of part (1).

If alternative (2) is true: Interchange \(G \) and \(F \) in the proof for alternative (1).

If alternative (3) is true: The proof is left to the reader as Exercise SEP.1. \(\square \)

6.4 Rotundity and convexity (CNV)

Theorem CNV.1 Let \(\mathcal{L} \) be a line and \(G \) a simple polygon in the Pasch plane \(\mathcal{P} \). Let \(\mathcal{C} \) be the set of all corners of \(G \) that do not belong to \(\mathcal{L} \) (\(G \cap \mathcal{L} \) may or may not be empty). Then for either side \(\mathcal{H} \) of \(\mathcal{L} \), the following statements are equivalent:

1. \(\mathcal{C} \subseteq \mathcal{H} \).
2. \(G \setminus \mathcal{L} \subseteq \mathcal{H} \), that is, every edge of \(G \) is a subset of \(\mathcal{L} \cup \mathcal{H} \), and
3. \(\text{ins} \ G \subseteq \mathcal{H} \).

Proof. (1)\(\Rightarrow \) (2) If \(\mathcal{C} \subseteq \mathcal{H} \), let \(\mathcal{E} \) be any edge of \(G \). If both endpoints of \(\mathcal{E} \) are members of \(\mathcal{C} \), then \(\mathcal{E} \subseteq \mathcal{H} \). If both ends of \(\mathcal{E} \) belong to \(\mathcal{L} \), then \(\mathcal{E} \subseteq \mathcal{L} \). All other edges are of the form \(\overrightarrow{PQ} \) where \(P \in \mathcal{L} \) and \(Q \in \mathcal{C} \). By Theorem IB.14, \(\overrightarrow{PQ} \subseteq \mathcal{H} \) so that for every edge \(\mathcal{E} \), \(\mathcal{E} \subseteq \mathcal{L} \cup \mathcal{H} \).

(2)\(\Rightarrow \) (1) If \(G \setminus \mathcal{L} \subseteq \mathcal{H} \), then \(\mathcal{C} \subseteq G \setminus \mathcal{L} \), so \(\mathcal{C} \subseteq \mathcal{H} \).
(2)⇒(3) Suppose \(G \setminus L \subseteq H \). Let \(K \) be the side of \(L \) opposite \(H \), and suppose \(P \in \text{ins} G \). Now \(P \) could belong to \(L \), \(H \), or \(K \). If \(P \in L \), let \(Q \) be any point of \(K \) such that \(\overrightarrow{PQ} \) is admissible, and \(\overrightarrow{PQ} \) must intersect \(G \) at some point \(R \notin L \). But \(\overrightarrow{PQ} \subseteq K \) by Theorem IB.14, so \(R \in K \) which contradicts the assumption that \(G \setminus L \subseteq H \).

If \(P \in K \), let \(P' \) be a point of \(L \) such that \(\overrightarrow{P'P} \subseteq K \) and \(\overrightarrow{P'P} \) is admissible. Then since \(P \in \text{ins} G \), the ray \(\overrightarrow{P'P} \) must intersect \(G \) at some point \(R \); this ray is also a subset of \(K \), so \(R \in K \), again a contradiction to \(G \setminus L \subseteq H \).

Therefore, no point of \(\text{ins} G \) can be in \(L \) or \(K \), and \(\text{ins} G \subseteq H \).

(3)⇒(2) Suppose \(\text{ins} G \subseteq H \), and let \(K \) be the side of \(L \) opposite \(H \). Let \(P \in G \setminus L \) and suppose \(P \notin H \), so that \(P \in K \). Then \(P \) belongs to some edge \(E = \overline{X_iX_{i+1}} \) of \(G \). If \(P \in X_iX_{i+1} \) choose \(Q \notin \overline{X_iX_{i+1}} \). If \(P \) is an endpoint of \(E \), say \(P = X_i \) choose \(Q \in \text{ins} \angle X_{i-1}X_iX_{i+1} \). In either case, by Theorem SEP.7, the line \(M = \overrightarrow{PE} \) contains a point \(E \) such that \(\overrightarrow{PE} \subseteq \text{ins} G \).

Choose \(C \) so that \(\overrightarrow{PC} \) and \(\overrightarrow{PF} \). If \(\overrightarrow{PE} \cap L = \emptyset \) let \(C = E \). Then \(C \in \text{ins} G \) and \(C \in K \) because \(\overrightarrow{PC} \cap L = \emptyset \), a contradiction to the assumption that \(\text{ins} G \subseteq H \). \(\Box \)

Definition CNV.2 Let \(G \) be a simple polygon in the Pasch plane \(P \).

(A) A line \(L \) is a **supporting line** of \(G \), or **supports** \(G \) if and only if \(G \cap L \neq \emptyset \) and \(\text{ins} G \) is contained in a halfplane with edge \(L \) (that is, \(\text{ins} G \) lies entirely within one side of \(L \)).

(B) A segment \(\overline{PQ} \) where \(P \) and \(Q \) are corners of \(G \), is said to **support** \(G \) iff the line \(\overrightarrow{PQ} \) is a supporting line of \(G \). If \(\overrightarrow{PQ} \) is an edge of \(G \) then we say that it is a **supporting edge** of \(G \). If \(G \) is a quadrilateral, a diagonal may or may not support \(G \).

(C) A polygon \(E \) is **rotund** iff for every line \(L \) containing an edge of \(E \), the corners of \(E \) not on \(L \) are on the same side of \(L \). This is an extension of Definition PSH.31, which applies to quadrilaterals.

Theorem CNV.3 (A) A line \(L \) is a supporting line of a simple polygon \(G \) if and only if \(G \cap L \neq \emptyset \) and all the corners of \(G \) not lying on \(L \) belong to the same side of \(L \).

(B) A simple polygon \(G \) is rotund if and only if every edge supports \(G \).

(C) An edge \(\overrightarrow{PQ} \) supports a simple polygon \(G \) if and only if all the corners of \(G \) other than \(P \) and \(Q \) belong to the same side of \(\overrightarrow{PQ} \).
(D) For any simple polygon $G = \langle X_1, \ldots, X_n \rangle$, the following statements are equivalent:

1. G is rotund,
2. for each integer $j \in [1; n]$, all the corners X_k where $X_k \neq X_j$ and $X_k \neq X_{j+1}$ belong to the same side H_j of $\overrightarrow{X_jX_{j+1}}$, and $G \setminus \overrightarrow{X_jX_{j+1}} \subseteq H_j$,
3. for each integer $j \in [1; n]$, $\text{ins} \ G$ is a subset of one side of $\overrightarrow{X_jX_{j+1}}$, and
4. for every integer j the corners different from X_{j-1}, X_j, and X_{j+1} belong to $\text{ins} \angle X_{j-1}X_jX_{j+1}$. (Note: if $j = 1$ then $j - 1 \equiv 0 \pmod{n}$ so that $X_{j-1} = X_n$, and if $j = n$ then $j + 1 \equiv 1 \pmod{n}$ so that $X_{j+1} = X_1$.)

(E) Every triangle is rotund.

The polygon G is not rotund since X_{j-1} and X_{j+2} are on opposite sides of L and L is not supporting.

Fig. 6.14 For Theorem CNV.3(A).

Proof. See Figure 6.14. (A) is immediate from Definition CNV.2(A) and Theorem CNV.1. (B) follows immediately from Definition CNV.3(C) and part (A) just above. (C) follows immediately from Definition CNV.2(B) and part (A) just above.

In part (D), statement (2) is a restatement of Definition CNV.3(C), (the last part follows immediately from Theorem CNV.1) and this is equivalent to statement (3) by Theorem CNV.1. To prove (4) is equivalent to (1), suppose G is rotund and let Q be any corner of G different from X_{j-1}, X_j, and X_{j+1}, where $j \in [1; n]$. Then by part (D)(2) above, Q and X_{j+1} are on the same side of $\overrightarrow{X_{j-1}X_j}$ and Q and X_{j-1} are on the same side of $\overrightarrow{X_jX_{j+1}}$. By Definition PSH.36, $Q \in \text{ins} \angle X_{j-1}X_jX_{j+1}$.

Conversely, let $j \in [1; n]$ and let Q be any corner of G other than X_{j-1}, X_j, and X_{j+1}, so that $Q \in \text{ins} \angle X_{j-1}X_jX_{j+1}$. Then by Definition PSH.36, Q and X_{j-1} are on the same side of $\overrightarrow{X_jX_{j+1}}$; therefore all corners other than X_j
and X_{j+1} are on the same side of X_jX_{j+1} and since j was chosen arbitrarily, \mathcal{G} is rotund by part (D)(2) above.

(E) Let A, B, and C be noncollinear points on the plane. Since C is the only corner of $\triangle ABC$ not on \overrightarrow{AB}, B is the only corner of $\triangle ABC$ not on \overrightarrow{AC} and A is the only corner of $\triangle ABC$ not on \overrightarrow{BC}, condition (D)(2) above is vacuously satisfied and $\triangle ABC$ is rotund. □

Theorem CNV.4 Let $\mathcal{G} = \langle X_1, \ldots, X_n \rangle$ be a rotund polygon, and for each $i \in [1; n]$ let \mathcal{H}_i be the side of X_iX_{i+1} containing all corners other than X_i and X_{i+1}. Then

(A) for every point $P \in \bigcap_{i=1}^n \mathcal{H}_i$, every ray \overrightarrow{PQ} intersects \mathcal{G} in exactly one point (so that the parity of P is odd);

(B) ins $\mathcal{G} = \bigcap_{i=1}^n \mathcal{H}_i$, and is convex; and

(C) for every $j \in [1; n]$, ins $\mathcal{G} \subseteq $ ins $\angle X_{j-1}X_jX_{j+1}$.

(If $j = 1$, $X_{j-1} = X_n$; if $j = n$ then $X_{j+1} = X_1$.)

Proof. (A) Let $P \in \bigcap_{i=1}^n \mathcal{H}_i$ and suppose $\overrightarrow{PQ} \cap \mathcal{G}$ contains two points A and B. If these are on the same edge of \mathcal{G}, then by Axiom I.1, P, Q, A, and B are collinear which is impossible since P belongs to a side of \overrightarrow{AB}.

Now suppose A is the first of two points of intersection A and B (\overrightarrow{PQ} is ordered with $P < Q$), and that $A \in \overrightarrow{X_jX_{j+1}}$ and $B \in \overrightarrow{X_kX_{k+1}}$, where $k \neq j$. Now $P \in \mathcal{H}_j$, and the ray \overrightarrow{PA} intersects $\overrightarrow{X_jX_{j+1}}$ in only one point, so that the ray $\overrightarrow{PA} \setminus \overrightarrow{AP} \subseteq K_j$, the side of $\overrightarrow{X_jX_{j+1}}$ opposite \mathcal{H}_j. Therefore $B \in K_j$. But by Theorem CNV.1, $\mathcal{G} \subseteq \overrightarrow{X_jX_{j+1}} \cup \mathcal{H}_j$ which is disjoint from K_j so we have a contradiction. Note that in this part of the proof it does not matter if A or B is a corner of \mathcal{G}.

(B) By Theorem CNV.1, ins $\mathcal{G} \subseteq \mathcal{H}_j$ for every $i \in [1; n]$, and therefore ins $\mathcal{G} \subseteq \bigcap_{i=1}^n \mathcal{H}_i$. Conversely, by part (A), every point of $\bigcap_{i=1}^n \mathcal{H}_i$ has odd parity and $\bigcap_{i=1}^n \mathcal{H}_i \subseteq $ ins \mathcal{G}. Since each \mathcal{H}_i is a convex set (Corollary to Theorem PSH.7) and the intersection of any collection of convex sets is convex (Exercise IB.15), ins \mathcal{G} is convex.

(C) ins $\mathcal{G} = \bigcap_{i=1}^n \mathcal{H}_i \subseteq \mathcal{H}_{j-1} \cap \mathcal{H}_j = $ ins $\angle X_{j-1}X_jX_{j+1}$. □

Corollary CNV.4.1 If \mathcal{G} is a rotund polygon and $P \in $ ins \mathcal{G}, then every ray from P intersects \mathcal{G} in a singleton Q. Furthermore, $\overrightarrow{PQ} \subseteq $ ins \mathcal{G} and $\overrightarrow{PQ} \setminus \overrightarrow{PQ} \subseteq $ out \mathcal{G}.

Proof. From parts (A) and (B) every ray from P (admissible or not) intersects \mathcal{G} only once, at a point Q, and if $P \overrightarrow{XQ}$, \overrightarrow{XQ} intersects \mathcal{G} only once so...
that $\overline{PQ} \subseteq \text{ins} \mathcal{G}$. For any X, if $P \neg Q \neg X$ then $\overline{PQ} \setminus \overline{PX}$ is a ray originating from X which has no intersection with \mathcal{G} and hence $X \in \text{out} \mathcal{G}$. \hfill \Box

Corollary CNV.4.2 Let \mathcal{G} be a rotund polygon and let $P \in \text{ins} \mathcal{G}$ and $Q \in \text{out} \mathcal{G}$. Then \mathcal{G} intersects \overline{PQ} at exactly one point.

Proof. By Corollary CNV.4.1, \overline{PQ} intersects \mathcal{G} at a single point A, and by Corollary SEP.4.1, \overline{PQ} must intersect \mathcal{G}, and since A is the only possible point of intersection, $A \in \overline{PQ}$. \hfill \Box

Corollary CNV.4.3 If \mathcal{G} is a triangle, then the definitions of $\text{ins} \mathcal{G}$ in PSH.36 and in SEP.3 have the same meaning.

Proof. Theorem CNV.3(E) says that a triangle is rotund; part (B) above states that if \mathcal{G} is rotund, $\text{ins} \mathcal{G} = \bigcap_{i=1}^{n} \mathcal{H}_i$. The left hand side is the definition of inside as in Definition SEP.3, using parity; the right hand side is the definition of inside as in PSH.36. \hfill \Box

Theorem CNV.5 (Generalization of Theorem PSH.50)

Let $\mathcal{G} = \langle X_1, \ldots, X_n \rangle$ be a rotund polygon and \mathcal{L} a line. If $\mathcal{G} \cap \mathcal{L} \neq \emptyset$, then

(A) $\mathcal{L} \cap \text{enc} \mathcal{G}$ is either a single point or a segment, and

(B) $\mathcal{L} \cap \mathcal{G}$ is exactly one of the following:

1. a single point S, in which case
 (a) S is a corner X_j of \mathcal{G},
 (b) $\mathcal{L} \cap \text{ins} \mathcal{G} = \emptyset$ and $\mathcal{L} \cap \text{ins} \angle X_{j-1}X_jX_{j+1} = \emptyset$
 (if $j = 1$, $X_{j-1} = X_n$; if $j = n$ then $X_{j+1} = X_1$),
 (c) the sets $\mathcal{G} \setminus \{X_j\}$, $\overline{X_jX_{j-1}}$, $\overline{X_jX_{j+1}}$, $\text{ins} \mathcal{G}$ and $\text{ins} \angle X_{j-1}X_jX_{j+1}$ are all subsets of the X_{j-1}-side
 ($= X_{j+1}$-side) of \mathcal{L};

2. exactly two points P and Q, in which case
 (a) no edge of \mathcal{G} contains both P and Q,
 (b) $\mathcal{L} \cap \text{ins} \mathcal{G} = \overline{PQ} \neq \emptyset$, $\mathcal{L} \cap \text{out} \mathcal{G} = \overline{PQ} \cup \overline{P} \cup \{Q\} \cup \{X \mid P \neg Q \neg X\}$,
 (c) $\mathcal{L} = \overline{PQ}$
 $= \{X \mid X \neg P \neg Q\} \cup \{P\} \cup \overline{PQ} \cup \{Q\} \cup \{X \mid P \neg Q \neg X\}$
 $= \mathcal{L} \setminus \overline{PQ} \cup \{P\} \cup \overline{PQ} \cup \{Q\}$;

3. more than two points, in which case
 (a) $\mathcal{L} \cap \text{ins} \mathcal{G} = \emptyset$, and
 (b) \mathcal{L} contains an edge \mathcal{E} of \mathcal{G}.

Proof. (A) Follows immediately from (B). The following Lemma will facilitate the rest of the proof.

Lemma Let $G = \langle X_1, \ldots, X_n \rangle$ be a rotund polygon and L a line.

(A) If $L \cap G$ contains two points P and Q and $PQ \cap G = \emptyset$, then $PQ \subseteq \text{ins } G$; and

(B) if $L \cap \text{ins } G \neq \emptyset$, then there exist exactly two points P and Q such that $L \cap G = \{P, Q\}$ and $PQ \cap G = \emptyset$.

Proof. (A) Let j be any member of $[1; n]$, and denote by H_j the side of L containing all corners of G that are not on L. P and Q cannot both be members of X_jX_{j+1} for then $PQ \cap G = \emptyset$ would not be empty. Therefore either P or Q fails to belong to X_jX_{j+1}.

Let $O \in PQ$ and suppose that $P \notin X_jX_{j+1}$; by Theorem CNV.3(D)(2) $P \in H_j$, and OP contains no point of G so that $O \in H_j$ by Definition IB.11. A similar proof holds if $Q \notin X_jX_{j+1}$. Thus $O \in \bigcap_{i=1}^n H_i = \text{ins } G$ by Theorem CNV.4(B).

Conversely, if $R \in L \cap \text{ins } G$, then by Theorem CNV.4(A) every ray from R intersects G at exactly one point. Let X and Y be such that $XR \cap G = \{P\}$ and $XR \cap G = \{Q\}$.

(B) Clearly exactly one of the alternatives (1), (2), or (3) holds. See Figure 6.15.

(1) (a) Suppose $L \cap G = \{S\}$ and S is not a corner of G. Then pick points A and B on L such that $A \rightarrow S \leftarrow B$. Then $AB \cap G$ is a singleton and by Theorem SEP.4(B) the parities of A and B are different so one of them, say B, belongs to $\text{ins } G$. Then choose X so that $A \rightarrow B \rightarrow X$. By Theorem CNV.4(A), BX, and
hence \(L \) must intersect \(G \) at some point \(C \). This contradicts the assumption that \(L \cap G = \{ S \} \), and therefore \(S \) must be a corner \(X_j \) of \(G \).

(b) By the Lemma, part (2), if \(L \cap \text{ins} G \neq \emptyset \) then there are exactly two points in the intersection \(L \cap G \), contradicting the assumption that \(L \cap G = \{ S \} \). Hence \(L \cap \text{ins} G = \emptyset \).

If \(L \) contains a point \(B \) of \(\text{ins} \angle X_{j-1}X_jX_{j+1} \), choose \(A \) so that \(A-X_j-B \).

Since \(L \cap G \) is a singleton, so is \(AB \cap G \), and by Theorem SEP.4(C), \(A \) and \(B \) have different parities, so one of them belongs to \(\text{ins} G \). Suppose \(B \in L \cap \text{ins} G \), and let \(X \) be such that \(A-X_j-B-X \). The ray \(BX \) must intersect \(G \) at some point \(C \) (by CNV.4), so there are two points in \(L \cap G \), a contradiction. Thus \(L \cap \text{ins} \angle X_{j-1}X_jX_{j+1} = \emptyset \).

This fact furnishes an alternative proof that \(L \cap \text{ins} G = \emptyset \), since \(\text{ins} G \subseteq \text{ins} \angle X_{j-1}X_jX_{j+1} \) (CNV.4(C)).

(c) Suppose \(X_{j-1} \) and \(X_{j+1} \) are on different sides of \(L \). Then by Axiom PSA, \(X_{j-1}X_{j+1} \) intersects \(L \) at some point \(P \), and by Theorem PSH.37 \(P \in \text{ins} \angle X_{j-1}X_jX_{j+1} \), in contradiction to (b). Thus both \(X_{j-1} \) and \(X_{j+1} \) belong to the same side of \(L \), which we will call \(H \). By Theorem IB.14, \(X_{j}X_{j-1} \subseteq H \) and \(X_{j}X_{j+1} \subseteq H \).

If \(Q \in \text{ins} \angle X_{j-1}X_jX_{j+1} \), then \(X_{j}Q \) intersects \(X_{j-1}X_{j+1} \) at some point \(R \) by the Crossbar Theorem PSH.39 \(QR \subseteq X_{j}Q \subseteq \text{Q-side of } L \) and hence \(QR \) does not intersect \(L \), and \(X_{j-1}X_{j+1} \) is also disjoint from \(L \), since \(X_{j-1} \) is on the same side of \(L \) as \(X_{j+1} \). Therefore all the points (in particular \(Q \)) of \(QR \cup X_{j-1}X_{j+1} \) are on the same side, which must be \(H \).

Finally, by CNV.4(C), \(\text{ins} G \subseteq \text{ins} \angle X_{j-1}X_jX_{j+1} \subseteq H \), and by Theorem CNV.1, \(G \setminus \{ X_j \} \subseteq H \), completing the proof of this part.

(2) (a) If a single edge \(E \) of \(G \) contains two points of \(L \), then \(E \subseteq L \) and \(E \) contains more than two points of \(L \) which contradicts the hypothesis. Therefore, \(P \) and \(Q \) cannot be on the same edge.

(b) If \(L \cap G = \{ P, Q \} \), then \(\overline{PQ} \cap L = \emptyset \) and by the Lemma, \(\overline{PQ} \subseteq \text{ins} G \). By Corollary CNV.4.1, both \(\{ X|X-P-Q \} \) and \(\{ X|P-Q-X \} \) are subsets of \(\text{out} G \), which proves (b); the assertions of (c) follow easily.

(3) (a) If \(L \cap \text{ins} G \neq \emptyset \), then by the Lemma (2) there exist exactly two points \(P \) and \(Q \) such that \(L \cap G = \{ P, Q \} \) and \(\overline{PQ} \cap G = \emptyset \). This contradicts the assumption that there are more than two points of intersection.

(b) First order \(L \) by Definition ORD.1. If \(L \) does not contain any edge of \(G \), then the intersection of \(L \) with every edge is a single point, and the set of all such intersections, being a finite set, has a least element \(P \). Let \(Q \) be the second (next) element of the intersection. Then \(\overline{PQ} \cap G = \emptyset \), and by the
Lemma, part (A), $\overline{PQ} \subseteq \text{ins } \mathcal{G}$, which is impossible by part (a). \hfill \Box

In order to make the statements and proofs of the following Lemma as clear as possible, we will state each part separately with its proof and any illustrations.

Lemma CNV.6(A) A quadrilateral is not rotund if and only if exactly one of its corners belongs to the inside of the triangle whose corners are the other three corners of the quadrilateral.

Proof. (A) Lemma CNV.6(A) is a repetition of Theorem PSH.53, (q.v.). There are four possibilities ((i)–(iv)) listed at the end of the proof of Theorem PSH.53, for the quadrilateral $\langle A, B, C, D \rangle$ to be non-rotund. One of these figures illustrates alternative (i), and we reproduce again here as Figure 6.16 for the reader’s convenience. It is quite easy to construct figures of the other possibilities, and in each case it will be seen that there are two supporting edges and two edges that are not supporting. \hfill \Box

![Figure 6.16](image)

Fig. 6.16 For one case of Lemma CNV.6(A) (see also Theorem PSH.53).

Lemma CNV.6(B) If \mathcal{G} is a quadrilateral with three supporting edges, then \mathcal{G} is rotund.

Proof. (B) If $\mathcal{G} = \langle A, B, C, D \rangle$ is not rotund, then by part (A) exactly two edges are not supporting edges. \hfill \Box

Lemma CNV.6(C) For every quadrilateral $\mathcal{F} = \langle A, B, C, D \rangle$, \overline{AC} and \overline{BD} are its diagonals. Then

1. each side of a line containing a non-supporting diagonal must contain a corner of \mathcal{F};
2. \mathcal{F} is not rotund iff exactly one of its diagonals supports \mathcal{F};
3. every quadrilateral has at least one non-supporting diagonal, and is rotund iff neither diagonal supports \mathcal{F};
(4) (a) \overline{AC} is the common edge of $\triangle ABC$ and $\triangle ADC$; if it is non-supporting, \overline{AC}, $\text{ins} \triangle ABC$, and $\text{ins} \triangle ADC$ are all subsets of $\text{ins} \mathcal{F}$, and

(b) \overline{BD} is the common edge of $\triangle BAD$ and $\triangle BCD$; if it is non-supporting, \overline{BD}, $\text{ins} \triangle BAD$, $\text{ins} \triangle BAD$, and $\text{ins} \triangle BCD$ are all subsets of $\text{ins} \mathcal{F}$.

Proof. (C) Result (1) follows directly from Definition CNV.2(C).

(2) This is essentially a re-statement of Lemma CNV.6(A). To say that the corner A, for instance, of \mathcal{F} belongs to the inside of the triangle $\triangle BCD$ is the same as saying that both A and C are on the same side of \overline{BD}, that is, \overline{BD} is a supporting line containing the diagonal \overline{BD}.

(3) If \mathcal{F} is not rotund, it has exactly one supporting diagonal by part (2); the other is non-supporting. If \mathcal{F} is rotund, then by Theorem PSH.54 the diagonals \overline{AC} and \overline{BD} intersect. If the intersection were a corner, then three corners would be collinear which would violate the definition of quadrilateral. Therefore by Definition IB.11, B and D are on opposite sides of \overline{AC} and A and C are on opposite sides of \overline{BD}. Hence neither diagonal is supporting.

(4) Suppose a diagonal, say \overline{AC} is not supporting, so that the corners B and D are on opposite sides of \overline{AC}. Then if $X \in \overline{AC}$, let $Y \in \overline{BD}$; the ray $\overrightarrow{XY} \subseteq B$-side of \overline{AC}, so cannot intersect either \overline{AD} or \overline{CD}, which are on the D-side of \overline{AC}, and cannot intersect \overline{AB} which is a subset of the side of \overrightarrow{XY} opposite C. Therefore Y is the only point of intersection of \overrightarrow{XY} with \mathcal{F}, and since Y contains no corner of \mathcal{F}, \overrightarrow{XY} is admissible, and the parity of X is odd.

If $P \in \text{ins} \triangle ABC$, let $Q \in \overline{AC}$ be a point such that \overrightarrow{PQ} contains no corner of \mathcal{F}. The segment \overline{PQ} contains no point of $\triangle ABC$, and since it lies entirely on the B-side of \overline{AC}, it is disjoint from \overline{AD} and \overline{CD}, and hence from \mathcal{F}. The ray \overrightarrow{PQ} contains the ray $\overrightarrow{PQ} \setminus \overrightarrow{PQ}$ which contains an odd number of points of \mathcal{F}, since $Q \in \text{ins} \mathcal{F}$. Hence P has odd parity, and belongs to $\text{ins} \mathcal{F}$. A similar argument for $\triangle ADC$ shows that both $\text{ins} \triangle ABC \subseteq \text{ins} \mathcal{F}$ and $\text{ins} \triangle ADC \subseteq \text{ins} \mathcal{F}$.

A similar argument holds if the diagonal \overline{BD} is not supporting. \square

Lemma CNV.6(D) Let \mathcal{G} be a simple polygon, and let A, B, C, and D be noncollinear points where $\mathcal{F} = \langle A, B, C, D \rangle$ is a quadrilateral such that

1. $\overline{AD} \cap \mathcal{G} = \overline{BC} \cap \mathcal{G} = \emptyset$,
2. $\text{ins} \langle A, B, C, D \rangle$ contains no corner of \mathcal{G}, and
3. \overline{CD} contains no corner of \mathcal{G}.
Then every edge E of G that intersects CD at a single point must also intersect AB, and the intersection is a singleton.

Proof. (D) By Lemma CNV.6(C)(3), at least one of AC or BD is a diagonal that supports F. Without loss of generality we may assume that AC does not support F. By Lemma CNV.6(C)(4), AC forms the common edge of the two triangles $\triangle ABC$ and $\triangle ADC$, $AC \subseteq \text{ins } F$, $\text{ins } \triangle ABC \subseteq \text{ins } F$ and $\text{ins } \triangle ADC \subseteq \text{ins } F$. Therefore there are no corners of G in $\text{ins } \triangle ABC$, $\text{ins } \triangle ADC$, or AC.

Suppose the edge E (of G) intersects CD at a point P and no other point. Applying Lemma PLGN.12 to $\triangle ADC$, we find that E must intersect the diagonal AC in a single point; if that point is A, we are done; if the intersection is a point of AC then we can apply the same theorem to the triangle $\triangle ABC$, concluding that E intersects AB (and hence AB), again in a singleton.

Lemma CNV.6(E) If a quadrilateral $G = \langle A, B, Q, P \rangle$ is such that P and Q are on the same side of AB (that is, AB is a supporting edge), then there exist points C and D such that $D \in AP$, $C \in BQ$, and $\langle A, B, C, D \rangle$ is rotund.

Proof. (E) If G is rotund the result follows immediately by choosing $C = Q$ and $D = P$. If G is not rotund, from Lemma CNV.6(A) there are two possibilities where P and Q are on the same side of AB:

(i) In alternative (i) (illustrated by Figure 6.17 overleaf), AP intersects BQ at R between B and Q; take C to be any point between R and B and take $D = P$. P and Q are on the same side of AB and by Theorem CNV.1, so are all points of $G \setminus AB$, including D and C. A and D are on the same side of $BC = BQ$. Since $C \in \overline{RB}$ and $D \in \overline{RA}$, by Theorem PSH.4 CD does not intersect AB and hence A and B are on the same side of CD by Definition IB.11. Finally, since R-D-A, A and D are on the same side of $BQ = \overline{RB}$, and $\langle A, B, C, D \rangle$ is rotonad.

(ii) In alternative (ii), BQ intersects AP at S between A and P; take D to be any point between S and A and take $C = Q$. By a similar argument $\langle A, B, C, D \rangle$ is rotund. We leave the construction of a figure illustrating alternative (ii) to the reader.

Lemma CNV.6(F) If a quadrilateral $\langle A, B, C, D \rangle$ is rotund, J is a point between A and D, and K is a point between B and C, then $\langle A, B, K, J \rangle$ is rotund.
Proof. (F) By Theorem CNV.1 both \(J \) and \(K \) (which belong to \(G \setminus \overrightarrow{AB} \)) are on the same side of \(\overrightarrow{AB} \); both \(K \) and \(B \) (which belong to \(G \setminus \overrightarrow{AD} \)) are on the same side of \(\overrightarrow{AD} = \overrightarrow{AJ} \); and both \(A \) and \(J \) (which belong to \(G \setminus \overrightarrow{BC} \)) are on the same side of \(\overrightarrow{BC} = \overrightarrow{BK} \). Then by Lemma CNV.6(B), \(G \) is rotund, since it has three supporting edges. \(\square \)

Lemma CNV.6(G) If \(G = \langle A, B, C, D \rangle \) is a rotund quadrilateral and \(\mathcal{E} \) is a nonempty finite set of points which contains no point of \(\overrightarrow{AB} \), then there exist points \(R \) and \(S \) such that \(A \prec R \prec D \), \(B \prec S \prec C \), and \(\text{enc}(A, B, S, R) \cap \mathcal{E} = \emptyset \) (and by Lemma CNV.6(F) \(\langle A, B, S, R \rangle \) is rotund).

Proof. (G) See Figure 6.18. Let \(\mathcal{C} = \{ X | \overrightarrow{AX} \prec D \text{ and } \overrightarrow{DX} \cap \mathcal{E} \neq \emptyset \} \). \(\mathcal{C} \) is a finite set which does not contain \(A \), so by Theorem ORD.10 we may let \(P' \) be the first point of \(\mathcal{C} \) (where \(A < D \)), and let \(P \) be any point with \(A \prec P \prec P' \).

If \(Y \in \text{enc} \triangle ABP \cap \mathcal{E} \), then either \(Y \in \overrightarrow{BP} \) or \(Y \in \text{ins} \angle ABP \) in which case \(\overrightarrow{BY} \) intersects \(\overrightarrow{AP} \) at some point \(Z \), by the Crossbar Theorem PLGN.39, so that either \(P \) or \(Z \) is a point of \(\mathcal{C} \), a contradiction to the definition of \(P' \).
Thus $\text{enc } \triangle ABP$ contains no point of E. Similarly we may find $Q \in \overline{BC}$ such that $\text{enc } \triangle ABQ$ contains no point of E.

Now $Q \in \text{ins } \angle BAD$ and $B \in \overline{AB}$ and $P \in \overline{AD}$ so by the Crossbar Theorem PSH.39, $\overline{AQ} \cap \overline{BP} \neq \emptyset$ and the intersection is a point $\{T\}$. A similar construction can be done for $P \in \text{ins } \angle ABC$, the ray \overrightarrow{BP}, and the segment \overline{BP}, and the point of intersection is again $\{T\}$ since distinct lines can intersect in only one point.

Pick S with $B \triangle S \triangle Q$. Then by Theorem PSH.37 $S \in \text{ins } \angle BTQ$, that is, $S \in \overline{PBQ} \cap \overline{AQB}$ (see Definition PSH.36). \overline{ST} intersects both \overline{AQ} and \overline{BP} at the point T and contains points on the other side of both, hence any point X with $X \triangle T \triangle S$ belongs to $\overline{PBA} \cap \overline{AQF} = \text{ins } \angle PTA$. Again by the Crossbar Theorem, \overline{ST} intersects \overline{AP} at a point R with $A \triangle R \triangle P$.

Then $\langle A, B, S, R \rangle$ is a quadrilateral where $\text{enc } \langle A, B, S, T \rangle \subseteq \text{enc } \triangle ABP \cup \text{enc } \triangle ABQ$, both of which are disjoint from E. By Lemma CNV.6(F) $\langle A, B, S, R \rangle$ is rotund. □

Lemma CNV.6(H) If

1. \overline{MN} is an edge of a simple polygon F,
2. A is a point such that $M \triangle A \triangle N$,
3. P and Q are points on the same side of \overline{MN}, and
4. $\overline{AP} \cap F = \overline{AQ} \cap F = \{A\}$,

then P and Q have the same parity with respect to F (either both P and Q belong to $\text{ins } F$ or both belong to $\text{out } F$).

![Diagram](image.png)

Fig. 6.19 For proof of Lemma CNV.6(H).

Proof. (H) See Figure 6.19. If P, Q, and A are collinear, the result is immediate from Theorem SEP.4(A). Otherwise, $P \notin \overline{AQ}$ and since P is a point
such that $\overrightarrow{AP} \cap \mathcal{F} = \emptyset$, the points Q, A, and P satisfy the hypotheses of Theorem PLGN.13. Thus there exists a point $D \in \overrightarrow{AP}$ such that no corner of \mathcal{F} is in either $\triangle AQD$ or \overrightarrow{QD}, and every edge that intersects \overrightarrow{QD} must also intersect \overrightarrow{QA}. But there is only one edge intersecting \overrightarrow{QA}, that is \overrightarrow{MN}, and it does not intersect \overrightarrow{QD} since both D and Q are on the same side of \overrightarrow{MN}. Since neither D nor $Q \in \mathcal{F}$, $\overrightarrow{QD} \cap \mathcal{F} = \emptyset$, and $\langle\langle P, D, Q \rangle\rangle$ is a polygonal path connecting P and Q which does not intersect \mathcal{F}. Hence by Theorem SEP.13(A), P and Q have the same parity. \square

Lemma CNV.6(I) Suppose X_jX_{j+1} is an edge of a simple polygon \mathcal{F}, A and B are distinct members of X_jX_{j+1}, P and Q are points on the same side of $\overrightarrow{X_jX_{j+1}}$, $\overrightarrow{PA} \cap \mathcal{F} = \{A\}$, $\overrightarrow{QB} \cap \mathcal{F} = \{B\}$, and one of the following hypotheses holds:

1. $X_jA \overrightarrow{B} X_{j+1}$,
2. $A = X_j$, $B \neq X_{j+1}$, and $X_{j-1} \in \angle PAB$,
3. $A \neq X_j$, $B = X_{j+1}$, and $X_{j+2} \in \angle QBA$, or
4. $A = X_j$, $B = X_{j+1}$, $X_{j-1} \in \angle PAB$ and $X_{j+2} \in \angle QBA$.

Then P and Q have the same parity with respect to \mathcal{F} (either both P and Q belong to $\text{ins} \mathcal{F}$ or both belong to $\text{out} \mathcal{F}$).

Proof. (I) For cases (i)–(iii), the first three figures given as Figure 6.20 are drawn as if hypothesis (1) above holds—the points A and B are not end points; however, they can serve to illustrate hypotheses (2)–(4), where A or B is an end point (we have to draw the figures some way). For case (iv), Figure 6.21 illustrates hypothesis (1), and Figure 6.22 illustrates hypotheses (2), (3), and (4).

![Fig. 6.20](image_url)

Fig. 6.20 For proof of Lemma CNV.6(I), cases (i)–(iii).

(Case i) If $\overrightarrow{AP} \cap \overrightarrow{BQ} \neq \emptyset$, let $\{R\} = \overrightarrow{AP} \cap \overrightarrow{BQ}$. Then $\overrightarrow{AR} \cup \overrightarrow{RB}$ is a polygonal path connecting P and Q which is disjoint from \mathcal{F} and by Theorem SEP.13(A), P and Q have the same parity with respect to \mathcal{F}.
6.4 Rotundity and convexity (CNV)

(Case ii) If either $A - Q - P$ or $B - P - Q$, then by Theorem SEP.4(A) P and Q have the same parity since PQ is a subset of either PA or QB and therefore $PQ \cap \mathcal{F} = \emptyset$.

(Case iii) If $\{A, P, Q\}$ is collinear and $A - P - Q$ then choose Q' so that $B - Q' - Q$, and in this case both $\{A, P, Q'\}$ and $\{B, Q', P\}$ are noncollinear. Similarly if $\{B, Q, P\}$ is collinear and $B - Q - P$ choose P' so that $A - P' - P$, so that both $\{A, P', Q\}$ and $\{B, Q, P'\}$ are noncollinear. The following argument applied to either $\langle A, B, Q', P \rangle$ or $\langle A, B, Q, P' \rangle$ as the case may be will show that P and Q', or P' and Q', and thus P and Q have the same parity.

(Case iv) Suppose $\{A, Q, B\}$ and $\{B, Q, P\}$ are noncollinear, and that $\langle A, B, Q, P \rangle$ is disjoint from $\langle B, Q \rangle$. Since P and Q are on the same side of $\overrightarrow{X_jX_{j+1}} = \overrightarrow{AB}$, $PQ \cap AB = \emptyset$ and condition (2) of Definition PSH.31 is satisfied. The triples $\{A, B, P\}$ and $\{Q, A, B\}$ are noncollinear, so that $\langle A, B, P, Q \rangle$ is a quadrilateral, but not necessarily rotund (see Figure 6.21).

By Lemma CNV.6(E) above, we can find $C \in BQ$ and $D \in AP$ such that $\langle A, B, C, D \rangle$ is rotund. Now let \mathcal{H} be the set of all corners of \mathcal{F} other than X_j and X_{j+1}. By Lemma CNV.6(G) above we may find points $F \in \overrightarrow{AD}$ and $E \in \overrightarrow{BC}$ such that if $\mathcal{G} = \langle A, B, E, F \rangle$, then $\text{ins} \mathcal{G} \cup \mathcal{G} = \text{enc} \mathcal{G}$ contains no corners of \mathcal{F} other than possibly A or B (which would be the case if A or B were the same as X_j or X_{j+1}). Thus $\overrightarrow{F \mathcal{E}}$ contains no corner of \mathcal{F}, is a subset of $\text{enc} \mathcal{G}$ and does not contain either X_j or X_{j+1}.

Since both \overrightarrow{AF} and \overrightarrow{BE} are disjoint from \mathcal{F} we may apply Lemma CNV.6(D) to conclude that every edge which intersects $\overrightarrow{F \mathcal{E}}$ in only one point must also intersect \overrightarrow{AB}. But no edge of \mathcal{F} contains two points of $\overrightarrow{F \mathcal{E}}$, for if
this segment contained two points of an edge, that edge would be a subset of it (since neither E nor $F \in \mathcal{F}$) and \overline{FE} would contain a corner of \mathcal{F}, a contradiction. Thus all edges intersecting \overline{FE} must also intersect \overline{AB}, so that $X_jX_{j+1}, X_{j+1}X_{j+2}$ are the only edges that might intersect \overline{FE}.

We now show that none of these are possible.

- **Fig. 6.22** For Lemma CNV.6(I), hypotheses (2)–(4), case (iv).

(a) $\overline{X_jX_{j+1}}$ cannot intersect \overline{FE} since both F and E are on the same side of $\overline{AB} = \overline{X_jX_{j+1}}$.

(b) Neither can the edge $\overline{X_{j-1}X_j}$ intersect \overline{FE}: if hypotheses (1) or (3) hold, $A \neq X_j$, so that if $\overline{X_{j-1}X_j}$ intersects \overline{FE} (which is in the side of \overline{AP} opposite X_j), $\overline{X_{j-1}X_j}$ would contain points on both sides of \overline{AP} and hence would intersect \overline{AP} by Axiom PSA, and because this last intersection would be on the X_j-side of \overline{FE} and also on the F-side of \overline{AB}, it would belong to \overline{AP}, contradicting $\overline{AP} \cap \mathcal{F} = \emptyset$.

If hypotheses (2) or (4) hold, $X_{j-1} \in \text{out} \angle PAB = \angle PX_jB$, so that $\overline{X_{j-1}X_j} \subseteq \text{out} \angle PX_jB$, whereas $\overline{FE} \subseteq \text{ins} \angle PAB$ (as it lies on the B-side of \overline{AP} and on the P-side of \overline{AB}), so that $\overline{X_{j-1}X_j}$ cannot intersect \overline{FE}.

(c) An argument similar to (b) shows that the edge $\overline{X_{j+1}X_{j+2}}$ cannot intersect \overline{FE}. Hence $\overline{FE} \cap \mathcal{F} = \emptyset$, and therefore $\langle\langle P, F, E, Q \rangle\rangle$ is a polygonal path joining P and Q, which does not intersect \mathcal{F}, so by Theorem SEP.13(A), P and Q have the same parity. \square

Theorem CNV.7 Let $\mathcal{F} = \langle X_1, \ldots, X_n \rangle$ be a simple polygon. Then $\text{ins} \mathcal{F}$ is convex iff \mathcal{F} is rotund iff $\text{enc} \mathcal{F}$ is convex.

Proof. (A) From Theorem CNV.4(B), if \mathcal{F} is rotund, then $\text{ins} \mathcal{F}$ is convex. We show the converse, that if $\text{ins} \mathcal{F}$ is convex, \mathcal{F} is rotund. See Figure 6.23.

Suppose \mathcal{F} is not rotund. Then by Theorem CNV.3(D)(3) for some integer $j \in [1; n]$ there are points of $\text{ins} \mathcal{F}$ on both sides of $\overline{X_jX_{j+1}}$. Let X be a point such that X_jX_{j+1}. Then by Theorem SEP.7(A) there is a point $E \notin \overline{X_jX_{j+1}}$ such that $\overline{EX} \subseteq \text{ins} \mathcal{F}$.
6.4 Rotundity and convexity (CNV)

Let \(P \in \text{ins} \mathcal{F} \) be on the side of \(X_jX_{j+1} \) opposite \(E \). Without loss of generality we assume \(P \) is on the \(X_j \)-side of \(E\). Then \(PE \) intersects \(X_jX_{j+1} \) at a point \(Z \) where \(P-Z-E \). If \(Z \in X_jX_{j+1} \) then \(PE \) is a segment joining \(P \) and \(E \) which also contains a point of \(\mathcal{F} \), a contradiction to the assumption that \(\text{ins} \mathcal{F} \) is convex.

If \(Z \notin X_jX_{j+1} \), \(Z-X_j-X_{j+1} \), since \(P \) is on the \(X_j \)-side of \(E\). Then since \(X_j \in Z\bar{X} \), and both \(Z\bar{X} \) and \(E\bar{X} \) are subsets of \(\text{ins} \angle EPX \), by the Crossbar Theorem the ray \(PX_j \) intersects \(E\bar{X} \) at some point \(W \) which belongs to \(\text{ins} \mathcal{F} \). Thus \(PW \) is a segment joining \(P \) and \(W \) which contains a point \(X_j \) of \(\mathcal{F} \), contradicting the assumption that \(\text{ins} \mathcal{F} \) is convex. We have shown that \(\text{ins} \mathcal{F} \) is convex iff \(\mathcal{F} \) is rotund.

![Diagram](https://via.placeholder.com/150)

Fig. 6.23 For proof of Theorem CNV.7(A).

(B) Now we show that \(\text{ins} \mathcal{F} \) is convex iff \(\text{enc} \mathcal{F} \) is convex. Suppose \(\text{ins} \mathcal{F} \) is convex; by Lemma CNV.6(A) \(\mathcal{F} \) is rotund. If \(P \) and \(Q \in \text{enc} \mathcal{F} \), either

(i) both \(P \) and \(Q \in \text{ins} \mathcal{F} \),
(ii) both \(P \) and \(Q \in \mathcal{F} \),
(iii) \(Q \in \text{ins} \mathcal{F} \) and \(P \in \mathcal{F} \), or
(iv) \(P \in \text{ins} \mathcal{F} \) and \(Q \in \mathcal{F} \).

In case (i) \(PQ \subseteq \text{ins} \mathcal{F} \subseteq \text{enc} \mathcal{F} \) by assumption; in case (ii), if \(P \) and \(Q \) belong to the same edge of \(\mathcal{F} \) then \(PQ \) is a subset of that edge and hence of \(\mathcal{F} \) and hence of \(\text{enc} \mathcal{F} \); if \(P \) and \(Q \) belong to different edges, by Theorem CNV.5(2) \(PQ \subseteq \text{ins} \mathcal{F} \) and hence \(PQ \subseteq \text{enc} \mathcal{F} \).
In case (iii), since \(\overrightarrow{PQ} \cap \text{ins} \ F \neq \emptyset \), \(\overrightarrow{PQ} \) intersects \(F \) in exactly two points, \(P \) and some point \(R \), and \(Q \in \overrightarrow{PR} \) by Theorem CNV.5. Thus \(\overrightarrow{PQ} \subseteq \overrightarrow{PR} \subseteq \text{enc} \ F \). Similarly for case (iv).

To prove the converse, assume \(\text{enc} \ F \) is convex, and let \(P \) and \(Q \) be any two points of \(\text{ins} \ F \). Then \(\overrightarrow{PQ} \subseteq \text{enc} \ F \) because \(\text{enc} \ F \) is convex.

Now suppose \(\overrightarrow{PQ} \) is not a subset of \(\text{ins} \ F \); then every point of \(\overrightarrow{PQ} \) that does not belong to \(\text{ins} \ F \) belongs to \(F \). Let \(A \) be the first point (where \(P < Q \)) such that \(A \in \overrightarrow{PQ} \cap F \). Then \(A \) is a corner and there exists at least one edge \(\overrightarrow{AB} \) which is not a subset of \(\overrightarrow{PQ} \).

Let \(D' \) be the first point of \(\overrightarrow{PB} \cap F \) (where \(P < B \)) and let \(D \) be such that \(P \rightarrow D \rightarrow D' \rightarrow B \). Then since \(P \in \text{ins} \ F \), \(D \in \text{ins} \ F \) by theorem SEP.4(A). Note that both \(\overrightarrow{PB} \) and \(\overrightarrow{AB} \) are subsets of \(\angle PQB \). Then \(D \in \angle PQB \) so by the Crossbar Theorem, there exists a point \(X \) such that \(\overrightarrow{QD} \cap \overrightarrow{AB} = \{X\} \). By Theorem SEP.7 there exists a point \(E \) on \(\overrightarrow{QD} \) such that \(\overrightarrow{EX} \subseteq \text{out} \ F \). Thus we have a segment \(\overrightarrow{DQ} \) connecting two points \(D \) and \(Q \) of \(\text{ins} \ F \) which contains points of \(\text{out} \ F \) so that \(\overrightarrow{DQ} \notin \text{enc} \ F \), contradicting the convexity of \(\text{enc} \ F \). See Figure 6.24. \(\square \)

![Fig. 6.24 For Theorem CNV.7, contradicting the convexity of enc F](image)

Theorem CNV.8 (A) Let \(F \) be a simple polygon, \(L \) a supporting line of \(F \), and let \(H \) be the half-plane with edge \(L \) such that \(\text{ins} \ F \subseteq H \). Then \(\text{enc} \ F \subseteq H \cup L \).

(B) Let \(F = \langle X_1, \ldots, X_n \rangle \) be a simple polygon and let \(L \) be a line. Then \(L \cap \text{ins} \ F \neq \emptyset \) iff there exist corners of \(F \) on opposite sides of \(L \).

(C) Let \(F \) be a simple polygon and \(L \) be a line. \(L \) is a supporting line of \(F \) if and only if \(F \cap L \neq \emptyset \) and \(L \cap \text{ins} \ F = \emptyset \).

Proof. (A) By Theorem CNV.1(2), every edge of \(F \) is a subset of \(L \cup H \).

(B) Assume that \(L \cap \text{ins} \ F \neq \emptyset \). Then \(L \) must intersect \(F \); for otherwise \(L \subseteq \text{out} \ F \) which is a contradiction to \(L \cap \text{ins} \ F \neq \emptyset \). If all the corners not in \(L \) are on one of its sides \(H \), then \(\text{ins} \ F \subseteq H \) by Theorem CNV.1 which
contradicts $\mathcal{L} \cap \text{ins} \mathcal{F} \neq \emptyset$. Therefore at least one corner must be on each side of \mathcal{L}.

Conversely, assume that X_j and X_k are corners of \mathcal{F} on opposite sides of \mathcal{L}, and choose the notation so that $1 \leq j < k \leq n$ (if necessary re-index the corners). Let r be the greatest integer less than k such that X_r is on the X_j-side of \mathcal{L}, and let s be the least integer greater than r such that X_s is on the X_k-side of \mathcal{L}.

Then for all i with $r < i < s$, $X_i \in \mathcal{L}$. Then $s \leq r + 3$ because otherwise there would be three adjacent collinear corners of \mathcal{F} which is impossible. Thus one of three possibilities holds:

1. $s = r + 1$, in which case X_r is on the opposite side of \mathcal{L} from X_s and $\overrightarrow{X_rX_s} \cap \mathcal{L} \neq \emptyset$ by Axiom PSA, and the intersection is a singleton P since $\mathcal{L} \neq \overrightarrow{X_rX_s}$. Then by Theorem SEP.7 there is a point of $\text{ins} \mathcal{F}$ on \mathcal{L}.

2. $s = r + 2$, in which case $X_{s-1} = X_{r+1} \in \mathcal{L}$. X_r, X_{r+1}, and X_s are noncollinear because \mathcal{F} is a polygon. Let A and B be points on \mathcal{L} with $A \overrightarrow{X_{r+1}} B$. Then one of the points A or B is on the X_r-side of $\overrightarrow{X_{r+1}X_s}$ and also on the X_s-side of $\overrightarrow{X_rX_{r+1}}$ and thus belongs to $\text{ins} \mathcal{L} \mathcal{X}_rX_{r+1}X_s$. By Theorem SEP.7 $\mathcal{L} \cap \text{ins} \mathcal{F} \neq \emptyset$.

3. $s = r + 3$, in which case X_{r+1} and X_{r+2} both belong to \mathcal{L}, while X_r and X_s are on opposite sides of \mathcal{L}. Pick a point P with $X_{r+1} \overrightarrow{P} X_{r+2}$; by Theorem SEP.7 there exists $E \notin \mathcal{L}$ with $\overrightarrow{PE} \subseteq \text{ins} \mathcal{F}$. See Figure 6.25.

Now E is either on the X_s-side or on the X_r-side of \mathcal{L}. Without loss of generality we may assume the former; pick a point $C \in \mathcal{L}$ to be the first intersection of the ray $\overrightarrow{X_{r+2}X_{r+1}} \setminus \overrightarrow{X_{r+2}X_{r+1}}$ with \mathcal{F}, and let Q be such that $C \overrightarrow{Q} X_{r+1}$.

Since \overrightarrow{PE} contains no point of \mathcal{F} by Theorem PLGN.13 there is also a point $D \in \overrightarrow{PE}$ such that every edge \mathcal{E} that intersects \overrightarrow{QD} also intersects \overrightarrow{QP}; but the only edges that intersect \overrightarrow{QP} are (a) $\overrightarrow{X_{r+1}X_{r+2}} \subseteq \mathcal{L}$ which cannot intersect \overrightarrow{QD} because D is on a side of \mathcal{L}, and (b) $\overrightarrow{X_rX_{r+1}}$ which cannot intersect \overrightarrow{QD} because it is on the opposite side of \mathcal{L} from D. Thus \overrightarrow{QD} does

![Fig. 6.25 For proof of Theorem CNV.8(B) alternative (3).](image)
not intersect any edge of F and by Theorem SEP.4 Q and D have the same parity. Since $D \in \text{ins} F$, $Q \in \text{ins} F$, hence $L \cap \text{ins} F \neq \emptyset$.

(C) If L is a supporting line, by Definition CNV.2(A) $F \cap L \neq \emptyset$ and $\text{ins} F$ is entirely on one side of L, and so disjoint from L. Conversely, suppose $F \cap L \neq \emptyset$ and $L \cap \text{ins} F = \emptyset$. By part (B), if $L \cap \text{ins} F = \emptyset$ then all the corners not on L are on the same side H, so that by Theorem CNV.1, $\text{ins} F \subseteq H$ and L is a supporting line. \(\square \)

Theorem CNV.9 Let F be a simple polygon and L be a supporting line of F. If there exist distinct corners A and B of F such that $A \in L$, $B \in L$, and \overline{AB} is not an edge of F, then $\text{enc} F$ and $\text{ins} F$ are both nonconvex.

Proof. If every point between A and B belonged to F, then \overline{AB} would be an edge of F. Therefore some point C with $A \rightarrow C \rightarrow B$ fails to belong to F, and since $\text{ins} F \cap L = \emptyset$ (Definition CNV.2(A)) $C \in \text{out} F$. Therefore $\text{enc} F$ is nonconvex and by Theorem CNV.7 $\text{ins} F$ is nonconvex. \(\square \)

Corollary CNV.9.1 Let F be a simple polygon and L be a supporting line of F. If $\text{ins} F$ (or $\text{enc} F$) is convex, then for any distinct corners A and B of F such that $A \in L$ and $B \in L$, \overline{AB} is an edge of F.

Proof. The corollary is the contrapositive of Theorem CNV.9. \(\square \)

Definition CNV.10 Let E be any nonempty subset of the Pasch plane. The **convex hull** of E (notation: $\text{coh} E$) is the set T such that T is convex, $E \subseteq T$, and if H is any convex set containing E, then $T \subseteq H$.

Theorem CNV.11

(A) If $E \subseteq F$ are nonempty subsets of a plane, then $\text{coh} E \subseteq \text{coh} F$.

(B) If E is any nonempty subset of a plane, then E is convex iff $\text{coh} E \subseteq E$ iff $\text{coh} E = E$.

(C) If E is any nonempty subset of a plane, $\text{coh}(\text{coh} E) = \text{coh} E$.

(D) If F is a simple polygon, then $\text{ins} F \subseteq \text{coh} F$, $\text{enc} F \subseteq \text{coh} F$, and $\text{coh}(\text{enc} F) = \text{coh} F$.

(E) If F is a simple polygon, then F is rotund iff $\text{ins} F$ is convex iff $\text{coh} F = \text{enc} F$.

Proof. (A) $\text{coh} F$ is a convex set containing E so $\text{coh} E \subseteq \text{coh} F$.

\(\square \)
(B) If E is convex then $\text{coh} E \subseteq E$, since E is a convex set containing E. Conversely, if $\text{coh} E \subseteq E$, we know already that $E \subseteq \text{coh} E$, so $\text{coh} E = E$ and E is convex.

(C) $\text{coh} E$ is convex, so by part (B) $\text{coh}(\text{coh} E) = \text{coh} E$.

(D) Let $P \in \text{ins} F$, and let A and B be two points such that \overrightarrow{AP} and \overrightarrow{PB} intersect F at points C and D respectively, since the parity of P is odd, and $P \in \overrightarrow{CD} \subseteq \text{coh} F$ because $\text{coh} F$ is convex. Since $F \subseteq \text{coh} F$ it follows that $\text{enc} F \subseteq \text{coh} F$, and from (A) and (C) $\text{coh}(\text{enc} F) \subseteq \text{coh}(\text{coh} F) = \text{coh} F$.

(E) If $\text{ins} F$ is convex, then $\text{enc} F$ is convex by Theorem CNV.7, so $\text{enc} F = \text{coh} F$ by part (B). If $\text{coh} F = \text{enc} F$ then $\text{enc} F$ is convex so that by Theorem CNV.7 $\text{ins} F$ is convex. □

Theorem CNV.12 Let F be a simple polygon, A be any member of $\text{ins} F$, P a corner of F, and H a given halfplane with edge \overrightarrow{AP}. Then there exists a corner Q of F belonging to H such that no corner of F belongs to $\text{ins} \angle PAQ$.

Proof. Since the line \overrightarrow{AP} has non-empty intersection with $\text{ins} F$, by Theorem CNV.8(B) there is a corner R of F with $R \in H$ (because there must be corners on both sides of \overrightarrow{AP}). If there is no corner of F belonging to $\text{ins} \angle PAR$ take $Q = R$ and we are done.

On the other hand, if there is a corner of F belonging to $\text{ins} \angle PAR$, then the set $D = \{X|X$ is a corner of F and $X \in \text{ins} \angle PAR\}$ is non-empty. Define an ordering $<$ on D as follows: if S and $T \in D$, $S < T$ if and only if $S \in \text{ins} \angle PAT$. Let Q be the minimal element of D with respect to this ordering. Then no corner of F belongs to $\text{ins} \angle PAQ$. □

Corollary CNV.12.1 Let F be a simple polygon, Q be any member of $\text{ins} F$, and let P be any corner of F. Then there exists a corner Q of F such that no corner of F belongs to $\text{ins} \angle PAQ$.

Proof. Let H be either halfplane with edge \overrightarrow{AP}. □

Theorem CNV.13 Let F be a simple polygon, D the set of all segments both of whose endpoints are corners of F, E the union of all segments in D, and let A be an arbitrary point of $\text{ins} F$.

(A) Let P and Q be corners of F such that no corner of F belongs to $\text{ins} \angle PAQ$, B be any member of $\text{ins} \angle PAQ$, and let C be the last intersection
of E and \overrightarrow{AB}. Then the line \overrightarrow{EF} containing the member \overrightarrow{EF} of D which intersects \overrightarrow{AB} at C is a supporting line of F.

(B) Let L be a supporting line of F which contains at least two distinct corners of F. Then there exist distinct corners P and Q of F such that no corner of F belongs to $\text{ins} \angle PAQ$, and if B is any member of $\text{ins} \angle PAQ$, then the last intersection of the set E and \overrightarrow{AB} is on L.

![Fig. 6.26](image)

For Theorem CNV.13(A),(B); the dotted lines are the lines of D which are not edges of F.

Proof. See Figure 6.26. (A) It suffices to show that there is no corner of F on the side of \overrightarrow{EF} opposite the A-side. If there were such a corner R, then since R is not on \overrightarrow{AB} either E and R would be on the same side of \overrightarrow{AB} or F and R would be on the same side of \overrightarrow{AB}. Furthermore, \overrightarrow{FR} and \overrightarrow{ER} would be on the side of \overrightarrow{EF} opposite the A-side. Hence \overrightarrow{AB} would intersect exactly one member of $\{\overrightarrow{FR}, \overrightarrow{ER}\}$ at M such that $A-C-M$. This would contradict the fact that C is the last point of intersection of E and \overrightarrow{AB}.

(B) Let the given corners on L be J and K. If we let $P = J$, then by Theorem CNV.12 there is a corner Q on the K-side of \overrightarrow{AP} such that there are no corners of F in $\text{ins} \angle PAQ$. If \overrightarrow{AQ} intersects L in a point M, then $P-M-K$ or $M = K$ because if $P-K-M$, then $K \in \text{ins} \angle PAQ$ which contradicts the definition of Q. From this it follows that if $B \in \text{ins} \angle PAQ$, then \overrightarrow{AB} intersects L at N such that $P-N-M-K$ (possibly $M = K$). Let C be the last intersection of \overrightarrow{AB} with E. Now C cannot be on the A-side of L because $\overrightarrow{FR} \subseteq L$ and \overrightarrow{AB} intersects L, and C cannot be on the side of L opposite the A-side because then there would be corners of F on that side of L, contradicting the definition of a supporting line. Hence $C \in L$. □
Definition CNV.14 Let \mathcal{F} be a simple polygon. A supporting line \mathcal{L} of \mathcal{F} is **basic** if and only if \mathcal{L} contains at least two corners of \mathcal{F}.

Remark CNV.15 (A) By Theorem CNV.13(A) every polygon has at least one basic supporting line.

(B) Let \mathcal{L} be a basic supporting line of the simple polygon \mathcal{F}. The set \mathcal{C} of corners of \mathcal{F} belonging to \mathcal{L} is finite, and may be ordered by Definition ORD.1. Hence there exist two (distinct) corners, P and Q, of \mathcal{F} on \mathcal{L} such that all other corners of \mathcal{F} on \mathcal{L} are between P and Q.

Definition CNV.16 The corners P and Q of the above remark are the **extremal** corners of \mathcal{F} with respect to the basic supporting line \mathcal{L}.

Thus all the corners (other than extremal corners) of \mathcal{F} lying on a basic supporting line \mathcal{L} are between the extremal corners.

Theorem CNV.17 If \mathcal{F} is a simple polygon, \mathcal{L} is a basic supporting line of \mathcal{F}, and V is an extremal corner of \mathcal{F} with respect to \mathcal{L}, then V belongs to exactly one other basic supporting line \mathcal{M} of \mathcal{F}, and V is an extremal corner of \mathcal{F} with respect to \mathcal{M}.

![Fig. 6.27](image.png)

Fig. 6.27 For proof of Theorem CNV.17(1).

Proof. See Figure 6.27. (I: Existence of \mathcal{M}) Let U be any corner of \mathcal{F} on \mathcal{L} different from V and let A be any member of ins \mathcal{F}. By Theorem CNV.12 there exists a corner W of \mathcal{F} such that U and W are on opposite sides of \overrightarrow{AV} and there is no corner of \mathcal{F} which belongs to ins $\angle VAW$.

Let B be any member of ins $\angle VAW$, D be the set of segments joining corners of F, E be the union of the members of D, C be the last intersection of E with \overrightarrow{AB}; and let \overrightarrow{DE} be the member of D such that $D \subset C \subset E$.

Suppose the notation has been chosen so that E is the endpoint of \overrightarrow{DE} on the W-side of \overrightarrow{AB}. Therefore D lies on the V-side of \overrightarrow{AB} and $D \notin$ ins $\angle VAW$. If $D \neq V$, there are three possibilities:

(i) $D \in L \cap U$-side of \overrightarrow{VA} \subseteq A-side of \overrightarrow{V};

(ii) $D \in A$-side of $L \cap U$-side of \overrightarrow{VA} $\subseteq A$-side of \overrightarrow{V}; or

(iii) V -- D -- A.

In any of these cases, $\overrightarrow{ED} \subseteq A$-side of \overrightarrow{VE} so C would lie between A and the intersection of \overrightarrow{VE} with \overrightarrow{AB}, contradicting the definition of C. Thus $D = V$. By Theorem CNV.13(A) $\overrightarrow{VE} = \mathcal{M}$ is a supporting line of F and since $V \in \mathcal{M}$ it is a basic supporting line different from L.

(II: V is an extremal corner) Since no corner of F belongs to \mathcal{H}, V is an extremal corner of F with respect to \mathcal{M}.

(III: Uniqueness of \mathcal{M}) All of the corners of F not on L or on \mathcal{M} lie in ins $\angle UVE$. If \mathcal{N} were a line containing V and some other corner not on \overrightarrow{VU} or \overrightarrow{VE}, that corner would belong to ins $\angle UVE$ and U and E would be on opposite sides of \mathcal{N}, which could not be a supporting line. □

Definition CNV.18 Let F be a simple polygon. A corner V of F is **normal** if and only if V is an extremal corner of F with respect to some basic supporting line of F.

Remark CNV.19 (A) By Theorem CNV.17 and Remark CNV.15(A) every polygon has at least three normal corners and at least three basic supporting lines.

(B) If a simple polygon G is rotund (i.e., ins G is convex), then every edge of G is contained in a basic supporting line and every corner of G is normal.

Theorem CNV.20 Let F be any simple polygon. There is a simple polygon G whose corners are the normal corners of F, every edge of G is contained in a basic supporting line of F, and every basic supporting line of F contains an edge of G.

(A) The polygon G is rotund, and $\text{enc } G = \text{coh } G$.

(B) There is no simple polygon different from G whose corners are the normal corners of F.

(C) Every corner of F not on G belongs to ins G, and $F \subseteq \text{enc } G$.

6.4 Rotundity and convexity (CNV)

(D) coh $\mathcal{F} = \text{enc } \mathcal{G}$.

Proof. By Remark CNV.15(B) every basic supporting line of \mathcal{F} contains exactly two normal corners. By Theorem CNV.17 every normal corner is contained in exactly two basic supporting lines.

Choose any normal corner of \mathcal{F} and call it X_1. There are exactly two basic supporting lines containing X_1. Let \mathcal{L}_1 be either one of them and let X_2 be the other normal corner on \mathcal{L}_1. Then there is exactly one other basic supporting line containing X_2; name this line \mathcal{L}_2. \mathcal{L}_2 contains exactly one other normal corner; name this corner X_3. Continuing in this manner we define a mapping X of some set $[1;n]$ onto the set of all normal corners of \mathcal{F}.

Let \mathcal{L}_j be the basic supporting line containing the normal corners X_j and X_{j+1}, and let \mathcal{L}_k be the basic supporting line containing the normal corners X_k and X_{k+1}, and suppose X_jX_{j+1} and X_kX_{k+1} intersect at some point C such that $X_jC=X_{j+1}$ and $X_kC=X_{k+1}$. Then X_k and X_{k+1} are on opposite sides of \mathcal{L}_j, which by Theorem CNV.8 contradicts the fact that it is a supporting line of \mathcal{F}. Hence no such C exists. If, on the other hand, we were to have $X_jX_kX_{j+1}$, then these three normal corners would be collinear and this is impossible by definition of extremal point.

This shows that $\bigcup_{k=1}^{n} X_kX_{k+1}$ is a simple polygon \mathcal{G}. That it has the properties claimed for it in (A) follows from the manner in which it was constructed.

(A) Since each edge of \mathcal{G} is contained in a basic supporting line \mathcal{L} of \mathcal{F} it follows by Theorem CNV.8 that all of the corners of \mathcal{F} except those on \mathcal{L} lie on the same side of \mathcal{L}, so \mathcal{G} is rotund. By CNV.11(E), enc \mathcal{G} = coh \mathcal{G}.

(B) The assertion follows immediately from the more general fact that a rotund polynomial is completely determined by its corners. We state this here as a lemma:

Lemma Given a set of corners for a rotund polygon $\mathcal{G} = \langle X_1, X_2, \ldots, X_n \rangle$, there is no simple polygon different from \mathcal{G} having the same set of corners.

Proof. If there were a simple polygon \mathcal{G}' having the same set of corners as \mathcal{G}, there would be a corner X_j of \mathcal{G} (with $X_{j-1}X_j$ and X_jX_{j+1} its adjacent edges in \mathcal{G}), such that one of the edges of \mathcal{G}' containing X_j would be X_jX_k where $X_k \neq X_{j+1}$ and $X_k \neq X_{j-1}$.

Then by Theorem CNV.3(D) $X_k \in \text{ins } X_{j-1}X_jX_{j+1}$ so X_{j+1} and X_{j-1} are on opposite sides of X_jX_k. Since X_{j-1} and X_{j+1} are both corners of \mathcal{G}', there must exist a polygonal path $\mathcal{Q} = \langle Y_1, \ldots, Y_{m+1} \rangle$ where $Y_1 = X_{j-1}$, $Y_{m+1} = X_{j+1}$, and $Y_i \neq X_j$ for $2 \leq i \leq m$. Thus $\text{enc } \mathcal{Q} = \text{coh } \mathcal{Q}$, contradicting the fact that \mathcal{G}' is a simple polygon. Hence \mathcal{G} is the only simple polygon having the same set of corners as \mathcal{G}.

\[Y_{m+1} = X_{j+1}, \] each of the segments \(Y_iY_{i+1} \) is an edge of \(G' \), and no segment in \(Q \) is \(X_jX_k \). (There is another polygonal path joining \(X_{j-1} \) and \(X_{j+1} \) in \(G' \) which includes \(X_jX_k \)).

Let \(p \in [1, m] \) be the greatest index such that \(Y_p \) belongs to the \(X_{j-1} \) side of \(\overrightarrow{X_jX_k} \); then \(Y_{p+1} \notin \overrightarrow{X_jX_k} \) for otherwise there would be three collinear corners of \(G \), which is impossible since \(G \) is rotund. Thus \(Y_{p+1} \) belongs to the \(X_{j+1} \) side of \(\overrightarrow{X_jX_k} \), and by Axiom PSA, \(\overrightarrow{Y_pY_{p+1}} \cap \overrightarrow{X_jX_k} = \{ C \} \) for some point \(C \). By Theorem CNV.7, \(\text{enc } G \) is convex, so that \(\overrightarrow{Y_pY_{p+1}} \subseteq \text{enc } G \) and hence \(C \in \text{enc } G \), and thus \(C \in X_jX_k \), which is impossible since \(G' \) is simple. Therefore no such polygon \(G' \) as postulated above can exist. \(\square \)

We return now to the proof of Theorem CNV.20.

(C) Let \(L_j \) be the basic supporting line containing the normal corners \(X_j \) and \(X_{j+1} \), and let \(H_j \) be the side of \(L_j \) that contains all corners of \(F \) other than \(X_j \) and \(X_{j+1} \). Then \(\text{ins } G = \bigcap_{j=1}^n H_j \) contains all the corners of \(F \) that are not on \(G \), and \(\text{enc } G = \text{ins } G \cup G \) contains all corners of \(F \). Since \(\text{enc } G \) is convex, it contains every edge of \(F \).

(D) Continuing from part (C): from \(F \subseteq \text{enc } G \) and Theorem CNV.11(A), \(\text{coh } F \subseteq \text{coh}(\text{enc } G) = \text{enc } G \) since \(\text{enc } G \) is convex. Now let \(H \) be any convex set containing \(F \). Every corner of \(G \) is a corner of \(F \), so \(\text{enc } G = \text{coh } G \subseteq H \) (by Definition CNV.10) and hence \(\text{enc } G \subseteq \text{coh } F \). \(\square \)

Definition CNV.21 (A) A convex subset \(E \) of a plane is **bounded** if and only if for each line \(L \), \(E \cap L \) is contained in a segment (that is, a bounded set) of \(L \).

(B) A subset \(E \) of a plane is **bounded** if and only if there exists a bounded convex subset of the plane containing \(E \).

Theorem CNV.22 (Proof of Theorem JCT.1, part (C)) Let \(F \) be a simple polygon. Then \(F \) and \(\text{ins } F \) are bounded but \(\text{out } F \) is not bounded.

Proof. By Theorem CNV.20 there exists a rotund polygon \(G \) such that \(\text{coh } F = \text{enc } G \). Since \(G \) is rotund, by Theorem CNV.5 \(G \) and \(\text{enc } G \) are bounded. By Theorem CNV.11(D) \(F \) and \(\text{ins } F \) are subsets of \(\text{coh } F \) and hence are bounded.

Let \(\overrightarrow{AB} \) be any edge of \(G \), \(C \) be any point on the side of \(\overrightarrow{AB} \) opposite the side containing the corners of \(G \) different from \(A \) and \(B \), and \(D \) be any point such that \(A\,–\,C\,–\,D \). By the extension property of betweenness (cf Definition
IB.1(B.3) and Definitions IB.3 and IB.4) no segment contains \vec{CD}, and hence no segment contains out $\mathcal{F} \cap \vec{CD}$ because $\vec{CD} \subseteq$ out $\mathcal{G} \subseteq$ out \mathcal{F}. Thus out \mathcal{F} is unbounded. \quad \Box

Remark CNV.22.1 It is quite easy to prove that any simple polygon \mathcal{F} is bounded. Let L be any line that intersects \mathcal{F}; let $P \in L$ be a point which is not on \mathcal{F} and let Q and Q' be points on L such that \vec{PQ} and $\vec{PQ'}$; first order the line so that $P < Q$; by Theorem PLGN.4(A) there exists a first point C and a last point D in $\overline{PQ} \cap L$; similarly, we may order the line so that $P < Q'$, and by the same theorem there exists a first point C' and a last point D' in $\overline{PQ'} \cap L$. Moreover, $\mathcal{F} \cap L \subseteq \overline{DD'}$, so that \mathcal{F} is bounded.

This, however, does not prove that ins \mathcal{F} is bounded, although it seems intuitively obvious. But then, the Jordan Curve Theorem itself is intuitively obvious.

Theorem CNV.23 Let $\mathcal{F} = \langle X_1, \ldots, X_n \rangle$ be a simple polygon.

(A) The inside ins \mathcal{F} is nonconvex if and only if there exist corners A and B of \mathcal{F} such that \overrightarrow{AB} is a supporting line of \mathcal{F} and every point on this line between A and B belongs to out \mathcal{F}.

(B) Suppose ins \mathcal{F} is nonconvex. Let A and B be the corners whose existence is assured by part (A). Re-index \mathcal{F} (if necessary) so that $X_i = A$, $X_j = B$, and X_{i-1} is on the side of $\overrightarrow{X_iX_{i+1}}$ opposite B, where $\{i, j\} \subseteq \{1; n\}$ and $i < j$. For simplicity of notation, we will use A and B in place of X_i and X_j, respectively.

Let

\[\mathcal{G} = \left(\bigcup_{k=j-n}^{i-1} \overrightarrow{X_kX_{k+1}} \right) \cup \overrightarrow{AB}, \]

and

\[\mathcal{H} = \left(\bigcup_{k=i+1}^{j-1} \overrightarrow{X_kX_{k+1}} \right) \cup \overrightarrow{AB}. \]

Then \mathcal{G} and \mathcal{H} are simple polygons,

\[
\begin{align*}
\text{ins } \mathcal{H} & \subseteq \text{ins } \mathcal{G}, \quad \text{ins } \mathcal{F} \subseteq \text{ins } \mathcal{G}, \\
\text{ins } \mathcal{H} & \subseteq \text{out } \mathcal{F}, \quad \text{out } \mathcal{G} \subseteq \text{out } \mathcal{F}, \quad \text{and} \\
\text{ins } \mathcal{G} \setminus ((\mathcal{H} \setminus \overrightarrow{AB}) \cup \text{ins } \mathcal{H}) & \subseteq \text{ins } \mathcal{F},
\end{align*}
\]

that is to say,

\[
\text{ins } \mathcal{G} \cap \text{out } \mathcal{H} \subseteq \text{ins } \mathcal{F}.
\]

Furthermore, out $\mathcal{F} = \text{out } \mathcal{G} \cup \text{ins } \mathcal{H} \cup \overrightarrow{AB}$.

Proof. (A) Suppose ins \mathcal{F} is nonconvex. By Theorem CNV.20 there exists a simple polygon \mathcal{T} such that coh $\mathcal{F} = \text{enc } \mathcal{T}$ and every corner of \mathcal{T} is a corner of
\(\mathcal{F} \). Since \(\text{ins} \mathcal{F} \) is not convex, by Theorem \text{CNV.11(E)} \(\text{enc} \mathcal{T} = \text{coh} \mathcal{F} \neq \text{enc} \mathcal{F} \), so \(\text{enc} \mathcal{F} \) is a proper subset of \(\text{enc} \mathcal{T} \). Since every edge of \(\mathcal{T} \) is contained in a supporting line of \(\mathcal{F} \), \(\mathcal{T} \) contains no points of \(\text{ins} \mathcal{F} \). Hence \(\mathcal{T} \) contains only points of \(\mathcal{F} \) and \(\text{out} \mathcal{F} \). Suppose it contains only points of \(\mathcal{F} \). Then by Remark \text{PLGN.6(F)} \(\mathcal{F} = \mathcal{T} \), \(\text{ins} \mathcal{F} = \text{ins} \mathcal{T} \), and hence \(\text{ins} \mathcal{F} \) is convex which contradicts our original assumption, so that \(\mathcal{T} \) must contain some points of \(\text{out} \mathcal{F} \).

Let \(\overline{CD} \) be an edge of \(\mathcal{T} \) which contains a point \(E \) in \(\text{out} \mathcal{F} \). Then the set of corners of \(\mathcal{F} \) belonging to \(\overline{CE} \) can be ordered by Definition \text{ORD.1} with \(C < D \). Let \(A \) be the corner of \(\mathcal{F} \) on \(\overline{CE} \) closest to \(E \) by this ordering.

Similarly, let \(B \) be the corner of \(\mathcal{F} \) on \(\overline{ED} \) which is closest to \(E \). Then every point between \(A \) and \(B \) belongs to \(\text{out} \mathcal{F} \).

Conversely, if there exist corners \(A \) and \(B \) of \(\mathcal{F} \) such that every point between \(A \) and \(B \) belongs to \(\text{out} \mathcal{F} \), then \(\text{enc} \mathcal{F} \) is nonconvex and by Theorem \text{CNV.7} \(\text{ins} \mathcal{F} \) is nonconvex.

(B) A routine check of the definition of a simple polygon shows that \(\mathcal{G} \) and \(\mathcal{H} \) satisfy the definition, inasmuch as \(\overline{AB} \) does not intersect \(\mathcal{F} \). It should be noted, however, that if \(B \) lies on \(\overline{X_{i-1}A} \), then \(A \) is not a corner of \(\mathcal{G} \) and \(\overline{X_{i-1}A} \) is an edge of \(\mathcal{G} \). Likewise, if \(A \) lies on \(BX_{j+1} \), then \(B \) is not a corner of \(\mathcal{G} \) and \(\overline{AX_{j+1}} \) is an edge of \(\mathcal{G} \). And if both these are true, neither \(A \) nor \(B \) is a corner of \(\mathcal{G} \) and \(\overline{X_{i-1}X_{j+1}} \) is an edge of \(\mathcal{G} \). Note also that it is not possible, given the definition of \(A \) and \(B \), for either \(X_{i+1} \) or \(X_{j-1} \) to be collinear with \(A \) and \(B \), for that would force \(A = X_{i+1} \) or \(B = X_{j-1} \) or both.

Since \(\mathcal{G} \cap (\mathcal{H} \setminus \overline{AB}) = \emptyset \) and \(\mathcal{H} \setminus \overline{AB} \) is polygonally connected, by Theorem \text{SEP.13(A)} either \(\mathcal{H} \setminus \overline{AB} \subseteq \text{ins} \mathcal{G} \) or \(\mathcal{H} \setminus \overline{AB} \subseteq \text{out} \mathcal{G} \).

Now let \(Z \) be a point on the side of \(\overline{AB} \) (a supporting line) opposite the corners of \(\mathcal{F} \). Then \(\overline{AZ} \cap \mathcal{G} = \emptyset \); then by Theorem \text{PLGN.13} there exists a point \(D \in \overline{AZ} \) such that every edge of \(\mathcal{G} \) that intersects \(\overline{X_{i+1}D} \) also intersects \(\overline{X_{i+1}A} \); \(\overline{AX_{i-1}} \) intersects \(\overline{X_{i+1}A} \) but lies on the side of \(\overline{X_{i+1}A} \) opposite \(D \), so cannot intersect \(\overline{X_{i+1}D} \); and \(\overline{AB} \) is an edge of \(\mathcal{G} \) that intersects both \(\overline{X_{i+1}D} \) and \(\overline{X_{i+1}A} \). Hence the ray \(\overline{X_{i+1}D} \) has only one intersection with \(\mathcal{G} \), and \(X_{i+1} \) has odd parity. It follows that \(\mathcal{H} \setminus \overline{AB} \subseteq \text{ins} \mathcal{G} \).

Then by Theorem \text{SEP.15}, case (2), we have
\[
\mathcal{H} \setminus \overline{AB} \subseteq \text{ins} \mathcal{G} \quad \text{and} \quad \mathcal{G} \setminus \overline{AB} \subseteq \text{out} \mathcal{H},
\]
out \(\mathcal{G} \) is a proper subset of out \(\mathcal{H} \), and
\[
\text{ins} \mathcal{H} \text{ is a proper subset of ins } \mathcal{G}.
\]

Now let \(P \) be any member of out \(\mathcal{G} \) and let \(Q \) be any member of out \(\angle APB \) such that \(\overline{PQ} \) contains no corners of \(\mathcal{F} \), \(\mathcal{G} \), or \(\mathcal{H} \). \(\overline{PQ} \) intersects \(\mathcal{G} \) in exactly
the points where it intersects \(F \) and \(H \); the number of intersections with \(G \) is even, and since \(\text{out} G \subseteq \text{out} H \) the number of intersections with \(H \) is even, and hence the number of intersections with \(F \) is even. Thus \(\text{out} G \subseteq \text{out} F \).

Taking complements with respect to the plane, this last relation gives us \(F \cup \text{ins} F \subseteq G \cup \text{ins} G \), so that \(\text{ins} F \subseteq G \cup \text{ins} G \). But \(G \subseteq F \cup \overline{AB} \), and both \(F \) and \(\overline{AB} \) are disjoint from \(\text{ins} F \), so that \(\text{ins} F \cap \text{ins} G = \emptyset \). Thus \(\text{ins} F \subseteq \text{ins} G \).

Let \(R \) be any member of \(\text{ins} H \) and \(S \) be any member of \(\text{out} \angle ARB \) such that \(\overrightarrow{RS} \) contains no corners of \(F \), \(G \), or \(H \). Then \(\overrightarrow{RS} \cap \overrightarrow{AB} = \emptyset \) and \(\overrightarrow{RS} \) intersects \(G \) in exactly the points where it intersects \(F \) and \(H \). The number of intersections with \(H \) is odd, and the number of intersections with \(G \) is odd because \(\text{ins} H \subseteq \text{ins} G \), so the number of intersections with \(F \) must be even.

Hence \(\text{ins} H \subseteq \text{out} F \).

Let \(T \) be any point of \(\text{ins} G \setminus ((H \setminus \overline{AB}) \cup \text{ins} H) \) and \(U \) be any point of \(\text{out} \angle ATB \) such that \(\overrightarrow{TU} \) contains no corners of \(F \), \(G \), or \(H \). Then since \(T \in \text{ins} G \), \(\overrightarrow{TU} \) has an odd number of intersections with \(G \).

Since \(\overline{AB} \) is a supporting line of \(G \), \(\text{ins} G \cap \overline{AB} = \emptyset \) and \(T \notin \overline{AB} \); by its definition, \(T \notin ((H \setminus \overline{AB}) \cup \text{ins} H) \), so \(T \in \text{out} H \), and has an even number of intersections with \(H \). Thus \(T \) has an odd number of intersections with \(F \), \(T \in \text{ins} F \), and \(\text{ins} G \setminus ((H \setminus \overline{AB}) \cup \text{ins} H) \subseteq \text{ins} F \). This reduces to \(\text{ins} G \cap \text{out} H \subseteq \text{ins} F \) since \(\text{out} H \) is the complement of \((H \setminus \overline{AB}) \cup \text{ins} H \).

The final assertion follows from taking complements of the relation

\[
\text{ins} G \setminus ((H \setminus \overline{AB}) \cup \text{ins} H) \subseteq \text{ins} F
\]

to get

\[
F \cup \text{out} F \subseteq \text{out} G \cup \text{ins} H \cup \overline{AB}
\]

and since

\[
G \cup (H \setminus \overline{AB}) = F \cup \overline{AB},
\]

this can be written

\[
F \cup \text{out} F \subseteq F \cup \text{out} G \cup \text{out} H \cup \overline{AB}.
\]

Now

\[
F \cap \text{out} F = F \cap (\text{out} G \cup \text{ins} H \cup \overline{AB}) = \emptyset,
\]

so we have

\[
\text{out} F \subseteq \text{out} G \cup \text{ins} H \cup \overline{AB}.
\]

But

\[
\text{out} G \subseteq \text{out} F \text{ and } \text{ins} H \subseteq \text{out} F,
\]

and by hypothesis

\[
\overline{AB} \subseteq \text{out} F,
\]

so that \(\text{out} F = \text{out} G \cup \text{ins} H \cup \overline{AB} \). \(\square \)
Remark CNV.24 Let $F = \langle X_1, \ldots, X_n \rangle$ be a simple polygon. The edges $X_{j-1}X_j$ and X_jX_{j+1} intersect at X_j. Let M and N be points such that $M \in X_jX_{j+1}$ and $N \in X_{j-1}X_j$, and let $A \in \text{ins} \angle X_{j-1}X_jX_{j+1}$. Then the line $\overline{AX_j}$ contains no point of $\text{ins} \angle X_{j-1}X_jX_{j+1}$. Let $A \in X_jB$. Let A' be the first point of intersection of $\overline{X_jA}$ with F (if there is no intersection, let A' be any point of $\overline{X_jA}$), and let B' the first point of intersection of $\overline{X_jB}$ with F, (again, if there is no intersection, let B' be any point of $\overline{X_jB}$). Finally, let P and Q be such that $A'P \sim B'Q$. Then by Theorem SEP.4(C), since $\overline{PD} \cap \text{ins} \angle X_{j-1}X_jX_{j+1} = \emptyset$ both P and $Q \in \text{out} \angle X_{j-1}X_jX_{j+1}$, and X_{j-1} and X_{j+1} are on the same side of \overline{PD} (if they were on different sides, then \overline{PQ} would contain points of $\text{ins} \angle X_{j-1}X_jX_{j+1}$, a contradiction). Also, by SEP.4, P and Q have the same parity relative to F.

Definition CNV.25 Given the setup of Remark CNV.24 above, the corner X_j is regular iff the parity of P and Q is even, and irregular if their parity is odd.

Remark CNV.26 (A) If a simple polygon F has an irregular corner X_j, then $\text{ins} \ F$ is nonconvex. To see this, let P and Q be points such that $P \sim X_jQ$ and both P and $Q \in \text{ins} \ F$; let D be a member of the X_{j-1}-side (X_{j+1}-side) of \overline{PD} be such that $\overline{PD} \cap \text{ins} \ F = \emptyset$; then $D \in \text{ins} \ F$ and by Theorem PSH.6 \overline{DQ} intersects both $\overline{X_jX_{j+1}}$ and $\overline{X_{j-1}X_j}$. By Theorem SEP.7(A), \overline{DQ} contains a point of $\text{out} \ F$, so that $\text{ins} \ F$ is not convex.

(B) By part (A), if $\text{ins} \ F$ is convex, F has no irregular corners. By Theorem CNV.4(B), if F is rotund, $\text{ins} \ F$ is convex, hence every corner of a rotund polygon is regular. See Figure 6.28.

Theorem CNV.27 Every simple polygon F has at least three regular corners.
6.4 Rotundity and convexity (CNV)

Proof. By Remark CNV.19(A) it suffices to show that every normal corner of F is a regular corner of F. Let A be a normal corner of F. By Theorem CNV.20 there exists a simple rotund polygon G such that A is a corner of G; let \overline{AB} and \overline{AC} be edges of G, and let D and E be the corners of F such that \overline{AD} and \overline{AE} are edges of F. Then D and E both belong to $\angle BAC \cap \text{ins} \angle BAC$. Since A is a regular corner of G (G is rotund—see CNV.26(B)) there exist points P and Q in $\overline{AB} \cap \overline{AC}$ such that A is between P and Q, $\overline{PQ} \cap G = \{A\}$, and P and Q both belong to $\text{out} \angle BAC$. Since by Theorem PSH.41(D), $\text{out} \angle BAC \subseteq \text{out} \angle DAE$, both P and Q belong to $\text{out} F$. Hence A is a regular corner of F. \(\square\)

Theorem CNV.28 Let F be a simple polygon. Then F has an irregular corner if and only if $\text{ins} F$ is nonconvex.

Proof. By Remark CNV.26, if F has an irregular corner, $\text{ins} F$ is not convex. Conversely, suppose $\text{ins} F$ is nonconvex and let X_i, X_j, G and H be as in Theorem CNV.23(B). By Theorem CNV.27 H has a regular corner X_k different from X_i and X_j so there exist points P and Q in $\text{out} H$ such that $P - X_k - Q$, $\overline{PQ} \cap F = \{X_k\}$ and P and Q are both members of $\text{out} \angle X_{k-1}X_kX_{k+1}$. Since $X_k \in (\text{out} H \setminus \overline{X_iX_j}) \subseteq \text{ins} G$, and P and Q can be chosen so that $\overline{PQ} \cap \overline{X_iX_j} = \emptyset$, it follows that both P and Q belong to $\text{ins} G$. Hence by the last inclusion in Theorem CNV.23(B) both P and Q belong to $\text{ins} F$ and X_k is an irregular corner of F. \(\square\)

Theorem CNV.29 (A) Let $F = \langle X_1, \ldots, X_n \rangle$ be a simple polygon with $n \geq 4$. Then there exist corners A and B of F such that $\overline{AB} \subseteq \text{ins} F$.

(B) If $F = \langle X_1, \ldots, X_n \rangle$ is any simple polygon with $n \geq 4$, which has two corners X_i and X_j with $1 \leq i < j \leq n$, such that $\overline{X_iX_j} \subseteq \text{ins} F$, let

$$G = \left(\bigcup_{k=n}^{i-1} \overline{X_kX_{k+1}} \right) \cup \overline{X_iX_j},$$

and

$$H = \left(\bigcup_{k=i}^{j-1} \overline{X_kX_{k+1}} \right) \cup \overline{X_iX_j}.$$

Then G and H are simple polygons and $\text{ins} G \subseteq \text{out} H$, $\text{ins} H \subseteq \text{out} G$, and $\text{ins} F = \text{ins} G \cup \text{ins} H \cup \overline{X_iX_j}$. Note that k may take on values $k < 1$ or $k > n$.

Proof. See Figure 6.29.
Fig. 6.29 For Theorem CNV.29, where \(X_i = X_3 \) and \(X_j = X_5 \).

(A) Let \(V \) be a regular corner of \(F \) and \(U \) and \(W \) be the corners of \(F \) such that \(\overrightarrow{UV} \) and \(\overrightarrow{WW} \) are edges of \(F \). Let \(E = \operatorname{enc}(U,V,W) \setminus (\overrightarrow{UV} \cup \overrightarrow{WW}) \), and \(D \) be the set of corners of \(F \) belonging to \(E \).

(Case I) See Figure 6.30 below. If \(D = \emptyset \), neither the inside of the triangle \(\triangle U,V,W \), or \(\overrightarrow{WW} \) contains a corner of \(F \). Moreover, \(\overrightarrow{WW} \) is not a subset of any edge of \(F \) because \(F \) has at least 4 edges. Then by Corollary PLGN.12.1, any edge that intersects \(\overrightarrow{WW} \) must intersect either \(\overrightarrow{UV} \), \(\overrightarrow{WW} \), or \(\{V\} \). But there are no edges that intersect \(\overrightarrow{UV} \) and \(\overrightarrow{WW} \), other than themselves, and we know they don’t intersect \(\overrightarrow{WW} \). Therefore no edge \(E \) can intersect \(\overrightarrow{WW} \), and by Theorem SEP.4(A) all points of \(\overrightarrow{WW} \) have the same parity.

Fig. 6.30 For proof of Theorem CNV.29 Case (I).

Since \(V \) is a regular corner there are points \(P \) and \(Q \) such that \(\overrightarrow{PQ} \cap F = \{V\} \) and both \(\overrightarrow{PV} \) and \(\overrightarrow{VQ} \subseteq F \). Let \(Z \in \overrightarrow{WW} \); without loss of generality we may assume that \(P \) is on the \(U \)-side of \(ZV \) and \(Q \) is on the \(W \)-side.

By Theorem PLGN.13 there exists a point \(D \in \overrightarrow{VQ} \) such that every edge that intersects \(\overrightarrow{ZD} \) must also intersect \(\overrightarrow{VQ} \). There are two edges that do so: \(\overrightarrow{UV} \) and \(\overrightarrow{WW} \); \(\overrightarrow{UV} \) is a subset of the side of \(ZV \) opposite \(W \), so \(\overrightarrow{UV} \) cannot intersect \(\overrightarrow{ZD} \); therefore \(\overrightarrow{WW} \) is the only edge that can intersect \(\overrightarrow{ZD} \), and it does so in a singleton by the Crossbar Theorem PSH.39, because \(W \in \angle ZVQ \).
Then by Theorem SEP.4(A) and (B), the parity of Z is different from the parity of D (which is even) and hence $Z \in \text{ins} \ F$ and $\overline{UW} \subseteq \text{ins} \ F$. Let $A = U$ and $B = W$, so that $\overline{AB} \subseteq \text{ins} \ F$.

(Case II) If $D \neq \emptyset$ let $C = \{X|V \leftarrow X \rightarrow W$ and \overline{UX} contains a corner of $F\}$. Ordering \overline{WV} with $V < W$ choose M to be the first element of C, and let $Z \in \overline{UM}$ be a corner.

Claim (a) See Figure 6.31. If E is any edge that intersects \overline{ZV} at a point R, then E must intersect \overline{UV} or \overline{VM}.

![Fig. 6.31 For proof of Theorem CNV.29 Case (II) Claim (a).](image)

Note first that E cannot intersect \overline{ZV} at two points, for then \overline{ZV} would contain a corner. By Theorem PLGN.12 E must intersect \overline{VM} or \overline{ZM}, but no edge can intersect \overline{VM} because F is simple, so E must intersect \overline{ZM} at some point R''. Let M' be such that $V - M' - M$; then $\overline{UM'}$ contains no corner and intersects $\overline{RR''}$ at some point R', by the Crossbar Theorem. We may apply Theorem PLGN.12 again to $\triangle U M' V$ to conclude that E must intersect \overline{UV} or \overline{VM} (E cannot contain V because F is simple). This proves Claim (a).

But no edge intersects \overline{UV} or $\overline{M'V} \subseteq \overline{WV}$ because F is simple. Therefore no edge intersects \overline{ZV}, and all points of \overline{ZV} have the same parity.

Claim (b) $\overline{ZV} \subseteq \text{ins} \ F$. See Figure 6.32 below.

Let N be a point of \overline{ZV}. Without loss of generality we may assume that P is on the U-side of \overline{ZV} and Q is on the M-side.

By Theorem PLGN.13 there exists a point $D \in \overline{VQ}$ such that every edge that intersects \overline{ND} must also intersect \overline{NV}. There are two edges that do so: \overline{UV} and \overline{WV}; \overline{UV} is a subset of the side of \overline{ZV} opposite D, so \overline{UV} cannot intersect \overline{ND}; \overline{WV}, therefore, is the only edge that can intersect \overline{ND}, and it does so in a singleton by the Crossbar Theorem PSH.39, because M (and W) belong to $\text{ins} \angle ZVQ$.
Then by Theorem SEP.4(A) and (B), the parity of N is different from the parity of D (which is even) and hence $N \in \text{ins} \mathcal{F}$ and $\overline{ZV} \subseteq \text{ins} \mathcal{F}$. This proves Claim (b).

Let $A = Z$ and $B = V$, so that $\overline{AB} \subseteq \text{ins} \mathcal{F}$.

(B) A routine check of the definition of a simple polygon shows that \mathcal{G} and \mathcal{H} are simple polygons. However, as in Theorem CNV.23, either X_i or X_j or both may fail to be corners of either \mathcal{G} or \mathcal{H}. If X_i fails to be a corner of \mathcal{G}, then it must be a corner of \mathcal{H} and vice versa. A similar statement holds for X_j.

Now \mathcal{G} and \mathcal{H} conveniently intersect in a segment $\overline{X_iX_j}$ so we may apply Theorem SEP.15 to them, and exactly one of its alternatives (1), (2), or (3) holds.

We first show that there exist points of $\text{ins} \mathcal{H}$ that are not in $\text{ins} \mathcal{G}$. Let $O \in \overline{X_iX_j}$, and choose a point R such that $R \notin \overline{X_iX_j}$ and \overrightarrow{OR} contains no corner of \mathcal{F}. Since $\overline{X_iX_j}$ is an edge of \mathcal{H}, by Theorem SEP.7 there exist points P and Q such that $P \overrightarrow{OQ} \subseteq \text{out} \mathcal{H}$ and $\overrightarrow{OQ} \subseteq \text{ins} \mathcal{H}$. Since $O \in \text{ins} \mathcal{F}$, we may choose P and Q so that $\overrightarrow{PQ} \subseteq \text{ins} \mathcal{F}$.

Let S be a point such that $S \in \angle X_iQX_j$ and \overrightarrow{QS} contains no corner of \mathcal{F}. For this ray, the number of intersections with \mathcal{F} is the total of the number of intersections with \mathcal{G} and with \mathcal{H}.

\overrightarrow{QS} has an odd number of intersections with \mathcal{F} since $Q \in \text{ins} \mathcal{F}$, an odd number of intersections with \mathcal{H} since $Q \in \text{ins} \mathcal{H}$, and hence an even number of intersections with \mathcal{G}, so that $Q \in \text{out} \mathcal{G}$.

Therefore Q is a point of $\text{ins} \mathcal{H}$ but not a point of $\text{ins} \mathcal{G}$, and $\text{ins} \mathcal{G} \subseteq \text{ins} \mathcal{H}$ is false. Similarly, $\text{ins} \mathcal{G} \subseteq \text{ins} \mathcal{H}$ is false, thus ruling out alternatives (1) and (2) of Theorem SEP.15, and alternative (3) is valid so that $\text{ins} \mathcal{G} \subseteq \text{out} \mathcal{H}$ and $\text{ins} \mathcal{H} \subseteq \text{out} \mathcal{G}$. See Figure 6.33.
We now show that \(\text{ins} \mathcal{F} \subseteq \text{ins} \mathcal{G} \cup \text{ins} \mathcal{H} \cup X_iX_j \). If \(X \in \text{ins} \mathcal{F} \) and \(X \notin X_iX_j \) and \(X \notin \text{ins} \mathcal{H} \), it follows that \(X \in \text{ins} \mathcal{G} \).

Again, let \(S \) be a point such that \(S \in \text{out} \angle X_iX_j \) and \(\overrightarrow{XS} \) contains no corner of \(F \). As above, the number of intersections with \(F \) is the total of the number of intersections with \(G \) and with \(H \). \(\overrightarrow{XS} \) has an odd number of intersections with \(F \) since \(X \in \text{ins} \mathcal{F} \); since \(X \notin \text{ins} \mathcal{H} \) (and does not belong to \(H \)) it belongs to \(\text{out} \mathcal{H} \) and has an even number of intersections with \(H \). Hence it has an odd number of intersections with \(G \), so that \(X \in \text{ins} \mathcal{G} \). By a similar argument, if \(X \in \text{ins} \mathcal{F} \) and \(X \notin X_iX_j \) and \(X \notin \text{ins} \mathcal{G} \) then \(X \in \text{ins} \mathcal{H} \). Note also that it has now been proved that \(\overrightarrow{PO} \subseteq \text{ins} \mathcal{G} \).

Finally, we show that \(\text{ins} \mathcal{F} \supseteq \text{ins} \mathcal{G} \cup \text{ins} \mathcal{H} \cup X_iX_j \). By alternative (3) of SEP.15 \(\text{ins} \mathcal{G} \cap \text{ins} \mathcal{F} = \emptyset \). Let \(X \in \text{ins} \mathcal{H} \) and \(X \notin \text{ins} \mathcal{G} \) and \(X \notin X_iX_j \) so that \(X \in \text{out} \mathcal{G} \). Again, let \(S \) be a point such that \(S \in \text{out} \angle X_iX_j \) and \(\overrightarrow{XS} \) contains no corner of \(F \). Then \(\overrightarrow{XS} \) intersects \(\mathcal{H} \) an odd number of times, \(\mathcal{G} \) an even number of times, so that it intersects \(F \) an odd number of times, so that \(X \in \text{ins} \mathcal{F} \). A similar argument shows that if \(X \in \text{ins} \mathcal{G} \) but does not belong to \(X_iX_j \) or to \(\text{ins} \mathcal{H} \), then \(X \in \text{ins} \mathcal{F} \). We already know that \(\overrightarrow{X_iX_j} \subseteq \text{ins} \mathcal{F} \), so it follows that \(\text{ins} \mathcal{F} = \text{ins} \mathcal{G} \cup \text{ins} \mathcal{H} \cup X_iX_j \). □

Definition CNV.30 Let \(S \) be a finite noncollinear set of points. (Meaning, according to Definition I.0, that there is no line \(\mathcal{L} \) such that \(S \subseteq \mathcal{L} \).) A **supporting line** of \(S \) is a line \(\mathcal{L} \) such that \(S \cap \mathcal{L} \neq \emptyset \) and all points of \(S \) not on \(\mathcal{L} \) are on the same side of \(\mathcal{L} \). A **basic supporting line** of \(S \) is a supporting line which has at least two members of \(S \) on it.

Theorem CNV.31 Every finite noncollinear set \(S \) has a basic supporting line.
Proof. Let D be the set of segments whose endpoints are members of S and let E be the union of the members of D. Let A, P, and U be noncollinear members of S. If any of the lines \overrightarrow{AP}, \overrightarrow{AU}, or \overrightarrow{PU} is a supporting line of S, then the proposition is true. Hence, assume none of these lines is a supporting line of S.

If $(\text{ins} \angle PAU) \cap S = \emptyset$, then let $Q = U$. If $(\text{ins} \angle PAU) \cap S \neq \emptyset$, then there exists a member Q of $\text{enc} \angle PAU$ such that $(\text{ins} \angle PAQ) \cap S = \emptyset$. Let B be any member of $\text{ins} \angle PAQ$ and let C be the last point of intersection of E and \overrightarrow{AB}. Then the line \overrightarrow{EF} containing the member \overrightarrow{EF} of D which intersects \overrightarrow{AB} is a basic supporting line of S. To show this it suffices to show that no member of S is on the side of \overrightarrow{EF} opposite the A-side. If there were a member R of S on this side, then since R is not on \overrightarrow{AB}, either E and R are on the same side of \overrightarrow{AB}, or they are on opposite sides. Furthermore \overrightarrow{ER} and \overrightarrow{FR} are on the side of \overrightarrow{EF} opposite the A-side. Hence by the Plane Separation Axiom \overrightarrow{AB} intersects exactly one member of $\{\overrightarrow{ER}, \overrightarrow{FR}\}$ at M such that $A-C-M$. This contradicts the fact that C is the last intersection of E and \overrightarrow{AB}. \hfill \square

Definition CNV.32 Let S be a finite noncollinear set of points and let \mathcal{L} be a basic supporting line of S. Using Definition ORD.1 to order the points of \mathcal{L}, then by Theorem ORD.10, $\mathcal{L} \cap S$ has a maximum and a minimum point. These points are the extremal points of S with respect to \mathcal{L}.

Theorem CNV.33 Let S be a finite noncollinear set of points, \mathcal{L} be a basic supporting line of S, and V be an extremal point of S with respect to \mathcal{L}. Then V belongs to one and only one other basic supporting line \mathcal{M} of S and V is an extremal point of S with respect to \mathcal{M}.

Proof. (Existence of \mathcal{M}) Let U be any point of $S \cap \mathcal{L}$ which is different from V, A be any member of S not on \mathcal{L}, and let \mathcal{H} be the side of \mathcal{L} opposite the A-side.

If \overrightarrow{AV} is a supporting line of S, let $\mathcal{M} = \overrightarrow{AV}$. Since \mathcal{L} is a supporting line of S, by Definition CNV.30 there is no point of S in \mathcal{H}. Therefore V is an extremal point of S with respect to \mathcal{M}.

If \overrightarrow{AV} is not a supporting line of S, then there exists a member W of S such that W and U are on opposite sides of \overrightarrow{AV} and no point of S belongs to $\text{ins} \angle WAV$. (To see this choose any member W' of S where W' and U are on opposite sides of \overrightarrow{AV}, then let $\mathcal{L} = \{X | X \in \overrightarrow{W'W} \text{ and } \overrightarrow{AX} \text{ contains a point}$
of \mathcal{S}). Ordering \mathcal{C} with $V < W'$ let W be the least member of \mathcal{C}. Then there is no point of \mathcal{S} belonging to $\text{ins} \angle VAW$.)

Let \mathcal{D} be the set of segments whose endpoints are members of \mathcal{S} and let \mathcal{E} be the union of the members of \mathcal{D}, let B be any member of $\text{ins} \angle VAW$, C the last intersection of \mathcal{E} with \overrightarrow{AB}, and let \overrightarrow{DE} be a member of \mathcal{D} such that $D \subseteq C \subseteq E$.

Choose the notation so that E is the endpoint of \overrightarrow{DE} which is on the W-side of \overrightarrow{AB}; then D is on the V-side of \overrightarrow{AB} and $D \notin \text{ins} \angle VAW$. By the same argument as in Theorem CNV.17, $D = V$. (For once, even the notation is the same, so the arguments are letter-for-letter the same.)

As in the proof of Theorem CNV.31, $\mathcal{M} = \overrightarrow{VE}$ is a basic supporting line \mathcal{S}. (This time the notation is not quite the same–substitute D for E and E for F in the original argument, and it works.)

Since by Definition CNV.30 no point of \mathcal{S} belongs to \mathcal{H}, V is an extremal point of V with respect to \mathcal{S}.

(Uniqueness of \mathcal{M}) Since \mathcal{S} is contained in $\text{enc} \angle UVE$, if \mathcal{N} is a line through V and some other point of \mathcal{S}, then $\mathcal{S} \cap \text{ins} \angle UVE$ is nonempty and \mathcal{N} is not a supporting line of \mathcal{S}. □

Definition CNV.34 Let \mathcal{S} be a finite noncollinear set of points. A point of \mathcal{S} is **normal** if and only if it is an extremal point of \mathcal{S} with respect to a basic supporting line of \mathcal{S}.

Remark CNV.35 By Theorems CNV.31 and CNV.33 every finite noncollinear set of points has at least three normal points and at least three basic supporting lines.

Theorem CNV.36 Let \mathcal{S} be a finite noncollinear set of points.

(A) There is a simple polygon \mathcal{G} whose corners are the normal points of \mathcal{S}, every edge of \mathcal{G} is contained in a basic supporting line of \mathcal{S} and every basic supporting line of \mathcal{S} contains an edge of \mathcal{G}.

(B) The polygon \mathcal{G} is rotund.

(C) There is no simple polygon different from \mathcal{G} whose corners are normal points of \mathcal{S}.

(D) Every member of \mathcal{S} not on \mathcal{G} belongs to $\text{ins} \mathcal{G}$, and $\mathcal{S} \subseteq \text{enc} \mathcal{G}$.

(E) $\text{coh} \mathcal{S} = \text{enc} \mathcal{G}$.
Proof. A slight modification of the proof of Theorem CNV.20 is left to the reader as Exercise CNV.1. □

6.5 Connectedness (CNT)

Lemma CNT.1 Suppose F is a simple polygon and J is a polygonal path such that $F \cap J = \emptyset$; by Theorem SEP.13(A) either $J \subseteq \text{ins } F$ or $\subseteq \text{out } F$. Then if I is a closed segment $[A, B]$ and J is a simple polygonal path which is not a segment, then there exists a one-to-one mapping φ of I onto J such that the image of each endpoint of I is an endpoint of J.

Proof. Using Definition PLGN.5(B) let $J = \bigcup_{k=1}^{m} Z_k Z_{k+1}$, where m is a natural number greater than 1. Using the denseness property of a segment (cf Theorem PSH.22) we can find a set $\{A = W_1, W_2, \ldots, W_{m+1} = B\} \subseteq [A, B]$ such that for each $k \in [1; m]$, $W_k < W_{k+1}$ (where $[A, B]$ is ordered by ORD.1 with $A < B$). Using Theorem PSH.56, for each $k \in [1; m]$, let φ_k be a one-to-one mapping of $[W_k, W_{k+1}]$ onto $[Z_k, Z_{k+1}]$ such that $\varphi_k(W_k) = Z_k$ and $\varphi_k(W_{k+1}) = Z_{k+1}$. Let $\varphi = \bigcup_{k=1}^{m} \varphi_k$; then φ is a one-to-one mapping of I onto J such that $\varphi(W_1) = Z_1$ and $\varphi(W_{m+1}) = Z_{m+1}$. □

Theorem CNT.2 The outside of a rotund polygon is polygonally connected.

Proof. Let $F = \langle X_1, \ldots, X_n \rangle$ be a rotund polygon and let $A \in \text{ins } F$. For each $i \in [1; n-1]$ define Y_i recursively as follows: let Y_1 and Y_2 be any points such that $A \rightarrow X_1 \leftarrow Y_1$ and $A \rightarrow X_2 \leftarrow Y_2$.

For each $i \in [3; n-1]$, if $\overrightarrow{AX_i} \cap \overrightarrow{Y_{i-2}Y_{i-1}}$ contains some point Z, let Y_i be any point such that $A \rightarrow X_i \leftarrow Y_i \leftarrow Z$, otherwise let $A \rightarrow X_i \leftarrow Y_i$; if $\overrightarrow{AX_n} \cap \overrightarrow{Y_nY_2}$ contains some point Z, let Y_n be any point such that $A \rightarrow X_n \leftarrow Y_n \leftarrow Z$, otherwise let $A \rightarrow X_n \leftarrow Y_n$.

No two rays $\overrightarrow{AX_i}$ and $\overrightarrow{AX_j}$ can intersect, for if they did, they would be the same, and would contain both $X_i \neq X_j$ in contradiction of Theorem CNV.4(A), so that $Y_i \neq Y_j$ if $i \neq j$. Also, by the construction, no three adjacent points Y_i can be collinear. Therefore $G = \langle Y_1, \ldots, Y_n \rangle$ is a polygon.

G is a subset of $\text{out } F$ because every edge $\overrightarrow{Y_iY_{i+1}}$ is on the side of $\overrightarrow{X_iX_{i+1}}$, and $\overrightarrow{Y_nY_1}$ is on the side of $\overrightarrow{X_nX_1}$ opposite A. Finally, G is simple, for if there were integers j and k such that $j \equiv k (\text{mod } n)$, $j \equiv k + 1 (\text{mod } n)$ and $j \equiv k + 2 (\text{mod } n)$}
6.5 Connectedness (CNT) 181

\[k - 1 (\text{mod } n) \text{ and a point } D \text{ such that } D \in Y_{i+j+1} \cap Y_{k+k+1}, \text{ then } AD \text{ would intersect both } X_{i+j+1} \text{ and } X_{k+k+1}, \text{ contradicting Theorem CNV.4(A).} \]

Now let \(P \) and \(Q \) be any members of out \(\mathcal{F} \). The Crossbar Theorem PSH.39 assures that \(\mathcal{G} \) intersects each of \(AP \) and \(AQ \) at exactly one point \(R \) or \(S \) respectively. If \(R = S \) let \(J = [PQ] \). Without loss of generality we may assume there exist \(i \leq j \) belonging to \([1, n]\) such that \(R \in Y_{i+i+1} \) and \(S \in Y_{j+j+1} \). If \(i = j \) let \(J = [PR] \cap [RS] \cap [SQ] \). If \(i \neq j \) let

\[J = [PQ] \cup [RS] \cup [SQ]. \]

Since \(APB \), \(A \in \text{ins } \mathcal{F} \), \(P \in \text{out } \mathcal{F} \), \(R \in \text{out } \mathcal{F} \), and \(AP \) has only one intersection with \(\mathcal{F} \), \([PR] \subseteq \text{out } \mathcal{F} \); a similar argument shows \([QS] \subseteq \text{out } \mathcal{F} \); all the other segments in the construction of \(J \) are known already to be subsets of \(\text{out } \mathcal{F} \), so \(J \subseteq \text{out } \mathcal{F} \). \(\square \)

Theorem CNT.3 (Proof of Theorem JCT.1, part (D); the inside and outside of a simple polygon are polygonally connected.) Given any simple polygon \(\mathcal{F} = \langle X_1, \ldots, X_m \rangle \), both (A) the inside \(\text{ins } \mathcal{F} \) and (B) the outside \(\text{out } \mathcal{F} \) are polygonally connected.

Proof. (A) First note that the inside of a triangle is polygonally connected since it is convex. We now show that \(\text{ins } \mathcal{F} \) is polygonally connected whenever it is true that for every \(k \) with \(3 \leq k < m \), the inside of every polygon with \(k \) edges is polygonally connected.

This shows, by the “strong form” of mathematical induction, that the inside of every simple polygon is polygonally connected. The italicized statement is called the “induction hypothesis.”

By Theorem CNV.29(A) there exist corners \(A \) and \(B \) of \(\mathcal{F} \) such that \([AB] \subseteq \text{ins } \mathcal{F} \). Let \(\mathcal{G} \) and \(\mathcal{H} \) be the simple polygons described in Theorem CNV.29(B). Since \(\mathcal{G} \) and \(\mathcal{H} \) each have fewer corners than \(\mathcal{F} \) has, both \(\text{ins } \mathcal{G} \) and \(\text{ins } \mathcal{H} \) are polygonally connected by the induction hypothesis.

As in the proof of CNV.29(B), let \(I \neq J \) be points such that \([IJ] \subseteq \text{ins } \mathcal{F} \), \([IJ] \cap [AB] = \{O\} \), \([IO] \subseteq \text{ins } \mathcal{G} \) and \([JO] \subseteq \text{ins } \mathcal{H} \). Let \(P \neq Q \) be any points of \(\text{ins } \mathcal{F} \). By CNV.29(B),

\[\{P, Q\} \subseteq \text{ins } \mathcal{F} = \text{ins } \mathcal{G} \cup \text{ins } \mathcal{H} \cup X_iX_j. \]

Then one of the following cases will hold:

(i) \(P \) and \(Q \) both belong to \(\text{ins } \mathcal{G} \) (or \(\text{ins } \mathcal{H} \));

(ii) \(P \in \text{ins } \mathcal{G} \) (or \(\text{ins } \mathcal{H} \)) and \(A-Q-B \);

(iii) \(P \in \text{ins } \mathcal{G} \) and \(Q \in \text{ins } \mathcal{H} \); or

(iv) \(P \) and \(Q \) both belong to \(AB \).
In case (iv) $\overline{PQ} \subseteq \overline{AB} \subseteq \text{ins} \mathcal{F}$ and \overline{PQ} is a polygonal path joining P and Q, and in case (i) there is a polygonal path joining P and Q in $\text{ins} \mathcal{G}$ (or $\text{ins} \mathcal{H}$) (hence in $\text{ins} \mathcal{F}$) by the induction hypothesis.

In case (ii) there exists a polygonal path $\mathcal{J} \subseteq \text{ins} \mathcal{G}$ (or $\text{ins} \mathcal{H}$) with endpoints P and Q so that $\mathcal{J} \cup \overline{QO} \cup \overline{IO}$ is a polygonal path contained in $\text{ins} \mathcal{F}$ connecting P and Q.

In case (iii) there exist polygonal paths $\mathcal{I} \subseteq \text{ins} \mathcal{G}$ and $\mathcal{J} \subseteq \text{ins} \mathcal{H}$ such that \mathcal{I} connects P to I and \mathcal{J} connects Q to J. Then $\mathcal{I} \cup \overline{IJ} \cup \mathcal{J} \subseteq \text{ins} \mathcal{F}$ is a polygonal path joining P and Q. It follows that $\text{ins} \mathcal{F}$ is polygonally connected.

(B) If $\text{ins} \mathcal{F}$ is convex, then by Theorem CNV.7, \mathcal{F} is rotund and by Theorem CNT.2 $\text{out} \mathcal{F}$ is polygonally connected. If $\text{ins} \mathcal{F}$ is not convex, again we use induction on m to show that $\text{out} \mathcal{F}$ is polygonally connected. We initiate the induction by noting that the outside of a triangle is polygonally connected since every triangle is convex. Now assume the induction hypothesis: for every k with $3 \leq k < m$, the outside of every polygon with k edges is polygonally connected.

By Theorem CNV.23(A) there exist corners A and B such that \overrightarrow{AB} is a supporting line of \mathcal{F} and every point between A and B belongs to $\text{out} \mathcal{F}$. Let \mathcal{G} and \mathcal{H} be the polygons defined in Theorem CNV.23(B). By Theorem SEP.7, we may let $\mathcal{I} \neq \mathcal{J}$ be points such that $\overline{IJ} \subseteq \text{ins} \mathcal{F}$, $\overline{IJ} \cap \overline{AB} = \{O\}$, $\overline{IO} \subseteq \text{out} \mathcal{G}$ and $\overline{JO} \subseteq \text{ins} \mathcal{H}$.

Also, from Theorem CNV.23(B) we get $\text{out} \mathcal{F} = \text{out} \mathcal{G} \cup \text{ins} \mathcal{H} \cup \overline{AB}$. We will refer to this without reference in the rest of the proof.

Let $P \neq Q \in \text{out} \mathcal{F}$. We then have the following cases:

(i) P and Q both belong to $\text{out} \mathcal{G}$ (or $\text{ins} \mathcal{H}$);
(ii) $P \in \text{out} \mathcal{G}$ (or $\text{ins} \mathcal{H}$) and $A \rightarrow Q \rightarrow B$;
(iii) $P \in \text{out} \mathcal{G}$ and $Q \in \text{ins} \mathcal{H}$; or
(iv) P and Q both belong to \overline{AB}.

In case (iv) $\overline{PQ} \subseteq \overline{AB} \subseteq \text{out} \mathcal{F}$ and \overline{PQ} joins P and Q; in case (i) there is a polygonal path joining P and Q in $\text{out} \mathcal{G}$ (or $\text{ins} \mathcal{H}$) (hence in $\text{out} \mathcal{F}$) by the induction hypothesis.

In case (ii) there exists a polygonal path $\mathcal{J} \subseteq \text{out} \mathcal{G}$ (or $\text{ins} \mathcal{H}$) with endpoints P and Q so that $\mathcal{J} \cup \overline{QO} \cup \overline{IO}$ is a polygonal path contained in $\text{out} \mathcal{F}$ connecting P and Q.

In case (iii) there exist polygonal paths $\mathcal{I} \subseteq \text{out} \mathcal{G}$ and $\mathcal{J} \subseteq \text{ins} \mathcal{H}$ such that \mathcal{I} connects P to I and \mathcal{J} connects Q to J. Then $\mathcal{I} \cup \overline{IJ} \cup \mathcal{J} \subseteq \text{out} \mathcal{F}$ is a poly-
6.5 Connectedness (CNT)

Corollary CNT.3.1 If \(F \) is a simple polygon, then \(\text{enc} \ F \) and \(\text{exc} \ F \) are polygonally connected.

Proof. Let \(P \) and \(Q \) be any members of \(\text{enc} \ F \). If both \(P \) and \(Q \) \(\in \text{ins} \ F \) the proof is complete. By Theorem SEP.7, if \(P \in F \) and \(Q \in \text{ins} \ F \) there exists a point \(I \in \text{ins} \ F \) such that \(PI \subseteq \text{ins} \ F \); if \(I \) is a path in \(\text{ins} \ F \) joining \(I \) and \(Q \), \(PI \cup I \) is a polygonal path in \(\text{enc} \ F \) joining \(P \) and \(Q \). Similar arguments show the other assertions. \(\square \)

Theorem CNT.4 If \(F \) and \(G \) are simple polygons such that \(G \subseteq \text{enc} \ F \), then \(\text{out} \ F \subseteq \text{out} \ G \) and \(\text{ins} \ G \subseteq \text{ins} \ F \). Moreover, if \(G \cap \text{ins} \ F \neq \emptyset \), then \(\text{ins} \ G \) is a proper subset of \(\text{ins} \ F \).

Proof. Let \(Q \in \text{out} \ F \), let \(A \in \text{ins} \ F \), let \(C \) be the last point of intersection of \(F \) and \(AQ \), and let \(P \) be any point such that \(ACP \). Then \(P \in \text{out} \ F \).

Let \(R \) be any point such that \(A \) \(\subseteq \text{out} \ F \). Since \(G \subseteq \text{enc} \ F \), \(G \cap \text{out} \ F \) is a path in \(\text{ins} \ F \) joining \(I \) and \(Q \), \(PI \cup I \) is a polygonal path in \(\text{enc} \ F \) joining \(P \) and \(Q \). Similar arguments show the other assertions. \(\square \)

Theorem CNT.5 Let \(F \) and \(G \) be simple polygons in the Pasch plane \(\mathcal{P} \).

(A) If \(G \subseteq \text{enc} \ F \), then \(F \subseteq \text{exc} \ G \).

(B) If \(G \subseteq \text{exc} \ F \), then either

1. \(\text{ins} \ F \subseteq \text{ins} \ G \), \(\text{out} \ G \subseteq \text{out} \ F \), \(\text{enc} \ F \subseteq \text{enc} \ G \), and \(F \subseteq \text{enc} \ G \), or
2. \(\text{ins} \ G \subseteq \text{out} \ F \), \(\text{ins} \ G \subseteq \text{out} \ F \), \(\text{enc} \ F \subseteq \text{exc} \ G \), and \(F \subseteq \text{exc} \ G \);
moreover, if (1) holds and \(\mathcal{G} \cap \text{out} \mathcal{F} \neq \emptyset \), then both inclusions \(\text{ins} \mathcal{F} \subseteq \text{ins} \mathcal{G} \) and \(\text{out} \mathcal{G} \subseteq \text{out} \mathcal{F} \) are proper.

Proof. (A) The second part of the proof of Theorem CNT.4 shows that \(\mathcal{F} \cap \text{ins} \mathcal{G} = \emptyset \) so that \(\mathcal{F} \subseteq \text{exc} \mathcal{G} \cup \text{out} \mathcal{G} \).

(B) By Theorem CNT.2 \(\text{ins} \mathcal{F} \) is polygonally connected. Since \(\mathcal{G} \subseteq \text{exc} \mathcal{F} \), \(\mathcal{G} \cap \text{ins} \mathcal{F} = \emptyset \), so by Theorem SEP.13(A) either \(\text{ins} \mathcal{F} \subseteq \text{ins} \mathcal{G} \) or \(\text{ins} \mathcal{F} \subseteq \text{out} \mathcal{G} \).

If (1) holds, and \(\text{ins} \mathcal{F} \subseteq \text{ins} \mathcal{G} \), then \(\text{exc} \mathcal{G} = \mathcal{P} \setminus \text{ins} \mathcal{G} \subseteq \mathcal{P} \setminus \text{ins} \mathcal{F} = \text{exc} \mathcal{F} \), so out \(\mathcal{G} \subseteq \text{exc} \mathcal{F} \). Suppose now that for some point \(C \), out \(\mathcal{G} \cap \mathcal{F} = \{ C \} \).

By Theorem SEP.7 there exists a point \(E \) such that \(CE \subseteq \text{ins} \mathcal{F} \); let \(D \) be the first point of intersection of \(CE \) with \(\mathcal{G} \) (since \(C \in \text{out} \mathcal{G} \)) and if we pick \(F \) so that \(C \neq F \neq P \), and \(C \neq F \neq E \), \(CE \subseteq \text{out} \mathcal{G} \cap \text{ins} \mathcal{F} \).

But this contradicts \(\text{ins} \mathcal{F} \subseteq \text{out} \mathcal{G} \). Thus out \(\mathcal{G} \cap \mathcal{F} = \emptyset \), and since out \(\mathcal{G} \subseteq \text{exc} \mathcal{F} \), out \(\mathcal{G} \subseteq \text{out} \mathcal{F} \); taking complements we have \(\text{enc} \mathcal{F} \subseteq \text{enc} \mathcal{G} \) so that in particular, \(\mathcal{F} \subseteq \text{enc} \mathcal{G} \).

If (2) holds, and \(\text{ins} \mathcal{F} \subseteq \text{out} \mathcal{G} \), then \(\text{enc} \mathcal{G} = \mathcal{P} \setminus \text{out} \mathcal{G} \subseteq \mathcal{P} \setminus \text{ins} \mathcal{F} = \text{exc} \mathcal{F} \), so that \(\text{ins} \mathcal{G} \subseteq \text{exc} \mathcal{F} \). Again, if \(\mathcal{F} \cap \text{ins} \mathcal{G} = \emptyset \), by similar reasoning to that of the previous paragraph, we can find points that belong both to \(\text{ins} \mathcal{G} \) and to \(\text{ins} \mathcal{F} \), which contradicts \(\text{ins} \mathcal{F} \subseteq \text{out} \mathcal{G} \), so that \(\mathcal{F} \cap \text{ins} \mathcal{G} = \emptyset \). Hence ins \(\mathcal{G} \subseteq \text{out} \mathcal{F} \); taking complements, \(\text{enc} \mathcal{F} \subseteq \text{exc} \mathcal{G} \) so that \(\mathcal{F} \subseteq \text{exc} \mathcal{G} \).

We now show the final assertion of the Theorem. Let \(O \in \mathcal{G} \cap \text{out} \mathcal{F} \), let \(Q' \) be such that \(L = \overrightarrow{OQ'} \) contains no corners of either \(\mathcal{F} \) or \(\mathcal{G} \), and let \(Q' \overset{\rightarrow}{\longrightarrow} O \overset{\rightarrow}{\longrightarrow} P' \).

Choose \(Q \) and \(P \) to be the first intersections of \(\overrightarrow{OQ'} \) and \(\overrightarrow{OP} \), respectively, with \(\mathcal{F} \). Then no point of \(\overrightarrow{QP} \) belongs to \(\mathcal{F} \) and \(\overrightarrow{QP} \subseteq \text{out} \mathcal{F} \), by Theorem SEP.4.

Now by Theorem SEP.7 there exist points \(E \) and \(F \in L \) such that \(\overrightarrow{EO} \subseteq \text{ins} \mathcal{G} \) and \(\overrightarrow{FO} \subseteq \text{out} \mathcal{G} \). \(E \) is on either the \(P \)-side or on the \(Q \)-side of \(O \). In the former case, choose \(E' \) so that \(P \overset{\rightarrow}{\longrightarrow} E' \overset{\rightarrow}{\longrightarrow} O \) and \(E \overset{\rightarrow}{\longrightarrow} E' \overset{\rightarrow}{\longrightarrow} O \), so that \(\overrightarrow{E'O} \subseteq \text{ins} \mathcal{G} \cap \text{out} \mathcal{F} \). A similar proof is valid in the other case. Thus both \(\text{ins} \mathcal{F} \subseteq \text{ins} \mathcal{G} \) and \(\text{out} \mathcal{G} \subseteq \text{out} \mathcal{F} \) are proper inclusions. \(\Box \)

Theorem CNT.6 Let \(\mathcal{F} \) and \(\mathcal{G} \) be simple polygons in the Pasch plane \(\mathcal{P} \). If \(\mathcal{F} \cap \text{ins} \mathcal{G} \neq \emptyset \) and \(\mathcal{F} \cap \text{out} \mathcal{G} \neq \emptyset \), then

(A) \(\mathcal{G} \cap \text{ins} \mathcal{F} \neq \emptyset \),
(B) \(\mathcal{G} \cap \text{out} \mathcal{F} \neq \emptyset \),
(C) \(\text{ins} \mathcal{F} \cap \text{ins} \mathcal{G} \neq \emptyset \),
(D) \(\text{out} \mathcal{F} \cap \text{out} \mathcal{G} \neq \emptyset \),
(E) \(\text{ins} \mathcal{F} \cap \text{out} \mathcal{G} \neq \emptyset \), and
(F) out $\mathcal{F} \cap \text{ins} \mathcal{G} \neq \emptyset$.

Proof. If \mathcal{G} were contained in enc \mathcal{F}, then by Theorem CNT.5(A), \mathcal{F} would be contained in exc \mathcal{G}, contradicting $\mathcal{F} \cap \text{ins} \mathcal{G} \neq \emptyset$. Hence $\mathcal{G} \cap \text{out} \mathcal{F} \neq \emptyset$, proving (B).

If \mathcal{G} were contained in exc \mathcal{F}, then in Theorem CNT.5(B) alternate (2) is ruled out, so \mathcal{F} would be contained in enc \mathcal{G}, contradicting $\mathcal{F} \cap \text{ins} \mathcal{G} \neq \emptyset$. Hence $\mathcal{G} \cap \text{ins} \mathcal{F} \neq \emptyset$, proving (A).

Let $C \in \mathcal{F} \cap \text{ins} \mathcal{G}$. By Corollary SEP.7.1 there exists a point E such that $CE \subseteq \text{ins} \mathcal{F}$. Let Q be the first point of intersection of CE and \mathcal{G}. If E is between C and Q, then $CE \subseteq \text{ins} \mathcal{G}$; if Q is between C and E let P be any point between C and Q; then $CP \subseteq \text{ins} \mathcal{G}$. In either case, $CP \subseteq \text{ins} \mathcal{G} \cap \text{ins} \mathcal{F}$, proving (C).

The proofs of the other cases are similar and left to the reader as Exercise CNT.1.

Theorem CNT.7 Let \mathcal{F} and \mathcal{G} be simple polygons. If $\mathcal{G} \subseteq \text{enc} \mathcal{F}$ and $\mathcal{F} \subseteq \text{enc} \mathcal{G}$, then $\mathcal{F} = \mathcal{G}$.

Proof. If $\mathcal{G} \subseteq \text{enc} \mathcal{F}$ and $\mathcal{F} \subseteq \text{enc} \mathcal{G}$, then by Theorem CNT.5(A), $\mathcal{F} \subseteq \text{exc} \mathcal{G}$ and $\mathcal{G} \subseteq \text{exc} \mathcal{F}$. But then $\mathcal{F} \subseteq \text{enc} \mathcal{G} \cap \text{exc} \mathcal{G} = \mathcal{G}$ and $\mathcal{G} \subseteq \text{enc} \mathcal{F} \cap \text{enc} \mathcal{F} = \mathcal{F}$. □

Theorem CNT.8 (Re-statement of the Jordan Curve Theorem JCT.1 for simple polygons) If \mathcal{G} is a simple polygon in the Pasch plane \mathcal{P}, then

(A) $\mathcal{P} = \mathcal{G} \cup \text{ins} \mathcal{G} \cup \text{out} \mathcal{G}$, where \mathcal{G}, ins \mathcal{G}, and out \mathcal{G} are pairwise disjoint sets;

(B) if $P \in \text{ins} \mathcal{G}$ and $Q \in \text{out} \mathcal{G}$, then $PQ \cap \mathcal{G} \neq \emptyset$;

(C) \mathcal{G} and ins \mathcal{G} are bounded sets, and out \mathcal{G} is unbounded; and

(D) ins \mathcal{G} and out \mathcal{G} are polygonally connected sets.

Proof. Parts (A) and (B) follow immediately from Theorem SEP.12, part (C) from Theorem CNV.22, and part (D) from Theorem CNT.3. □

There is a more extensive discussion of the Jordan Curve Theorem at the beginning of this chapter.
6.6 Exercises for Jordan Curve Theorem

Exercise PLGN.1* Prove part (A) of Theorem PLGN.15; that is, that an O-ordering of a simple polygon has the trichotomy property.

Exercise SEP.1* Prove Theorem SEP.15 in the case that alternative (3) is true.

Exercise CNV.1 Prove Theorem CNV.36 by modifying the proof of Theorem CNV.20.

Exercise CNT.1* Complete the proof of Theorem CNT.6.

6.7 Selected answers for Jordan Curve Theorem

Exercise PLGN.1 Proof. We show that for any \(P \) and \(Q \in \mathcal{G}\setminus \{O\} \), exactly one of \(P < Q \), \(P = Q \), or \(P > Q \) is true (Trichotomy). In this proof we will refer to the various parts of Definition PLGN.14 as “rule (A),” “rule (B),” etc. We will assume that the polygon \(\mathcal{G} \) consists of \(n \) edges \(X_iX_{i+1} \) where \(i = \alpha + 1, \ldots, \alpha + n \), its corners being \(X_{\alpha+1}, \ldots, X_{\alpha+n} = X_\alpha \), and that \(O \in \overline{X_\alpha X_{\alpha+1}} \).

By rule (A), if both \(P \) and \(Q \) are corners of \(\mathcal{G} \), their ordering is the same as the ordering of the integers \(\{\alpha + 1, \alpha + 2, \ldots, \alpha + n\} \), for which trichotomy holds; therefore trichotomy holds for \(P \) and \(Q \).

If we prove trichotomy in the case where \(P \) is not a corner of \(\mathcal{G} \), this will also (by interchanging \(P \) and \(Q \)) show it is true if \(Q \) is not a corner of \(\mathcal{G} \).

Moreover, it will suffice to prove that if \(P \neq Q \), then exactly one of \(P < Q \) or \(Q < P \) is true; for this implies that if neither \(P < Q \) nor \(Q < P \), then \(P = Q \).

(Case 1: \(P \neq Q \) and \(P \in \overline{X_iX_{i+1}} \) where \(\alpha < i < \alpha + n \).) Then either

(a) \(Q \in \overline{X_iX_{i+1}} \)

(b) \(Q \in \overline{X_jX_{j+1}} \) where \(j \neq i \) and \(\alpha < j < \alpha + n \), or

(c) \(Q \in \overline{X_{\alpha+n}X_{\alpha+1}} \setminus \{O\} = \overline{X_\alpha X_{\alpha+1}} \setminus \{O\} \).

If (a) holds, then since trichotomy holds on \(\overline{X_iX_{i+1}} \), either \(P < Q \) or \(Q < P \). If (b) holds, either

(1) \(\alpha < i < j < \alpha + n \), in which case \(X_j \leq Q \) and \(X_{i+1} \leq X_j \) and \(P < X_{i+1} \) so \(P < X_{i+1} \leq X_j \leq Q \) and by rule (D) \(P < Q \); or
(2) \(\alpha < j < i < \alpha + n \), in which case \(Q \leq X_{j+1} \leq X_i < P \) so \(Q < P \).

If (c) holds, either

1. \(O \) or \(X_{\alpha+1} \) or \(Q = X_{\alpha+1} \), in which case, since \(\alpha < i < \alpha + 1 \leq i \) and \(Q \leq X_{\alpha+1} \leq X_i < P \) so by rule (D) \(Q < P \); or

2. \(X_{\alpha+n} \) or \(Q = X_{\alpha+n} \), in which case since \(i < \alpha + n \), \(X_{i+1} \leq X_{\alpha+n} \) and \(P \leq X_{i+1} < X_{\alpha+n} \leq Q \) and \(P < Q \).

(Case 2: \(P \neq Q \) and \(P \in \overline{X_\alpha X_{\alpha+1}} \) \(\setminus \{O\} \). Then either

1. \(X_{\alpha+n} \) or \(Q = X_{\alpha+n} \) in which case either \(P < Q \) or \(Q < P \), by rule (C); or

2. \(O \) or \(\overline{X_{\alpha+1}} \) or \(Q = X_{\alpha+1} \) in which case \(Q < X_{\alpha+1} \) by rule (C), and \(Q \leq X_{\alpha+1} < X_{\alpha+n} < P \) so that \(Q < P \).

Moreover, if (a) holds, and \(Q \in \overline{X_i X_{i+1}} \) where \(\alpha + 1 < i < \alpha + n \), then \(Q \leq X_{i+1} \leq X_{\alpha+n} < P \) so \(Q < P \).

If (b) holds, then \(P \leq X_{\alpha+1} \) if \(Q \neq P \) and \(Q \in \overline{X_\alpha X_{\alpha+1}} \setminus \{O\} \) then either

1. \(X_{\alpha+n} \) or \(Q = X_{\alpha+n} \) so that \(Q \geq X_{\alpha+n} \) and \(Q \geq X_{\alpha+n} > X_{\alpha+1} > P \) and \(Q > P \); or

2. \(O \) or \(\overline{X_{\alpha+1}} \) or \(Q = X_{\alpha+1} \) in which case either \(P < Q \) or \(Q < P \) by rule (C).

Moreover, if (b) holds, and \(Q \in \overline{X_i X_{i+1}} \) where \(\alpha < i < \alpha + n \), then \(P < X_{\alpha+1} \leq X_i < Q \) so \(P < Q \).

Exercise SEP.1 Proof. If alternative (3) of Theorem SEP.15 holds, we assume that \(G \subseteq \text{out} \ F \) and \(F \subseteq \text{out} \ G \). We show that \(G \cup \text{ins} G \) is a proper subset of \(\text{out} \ F \).

First we prove that \(\text{ins} G \subseteq \text{out} \ F \). Let \(P \) be any point of \(\text{ins} G \), and let \(A \) be any point such that \(\overrightarrow{PA} \) does not contain a corner of \(F \) or \(G \), or intersect the segment \(\overrightarrow{CD} \). Then by the Lemma in the proof of Theorem SEP.15, \(\overrightarrow{PA} \cap G = \overrightarrow{PA} \cap (G \setminus \overrightarrow{CD}) \).

Since \(P \in \text{ins} G \) every ray from \(P \) must intersect \(G \) at least once. Order \(\overrightarrow{PA} \) with \(P < A \), and let \(Q \) be the first point and \(R \) the last point of intersection of \(\overrightarrow{PA} \) with \(G \). If the ray \(\overrightarrow{PA} \setminus \overrightarrow{PR} \) intersects \(F \) let \(S \) be the first point of intersection of \(\overrightarrow{PA} \setminus \overrightarrow{PR} \) with \(F \), otherwise let \(S \) be any point of \(\overrightarrow{PA} \setminus \overrightarrow{PR} \). Then \(\overrightarrow{PQ} \) contains no point of \(G \) other than \(Q \) so that by Theorem SEP.4(A),
\[\overline{PQ} \subseteq \text{ins } G\] and hence contains no point of \(F\) since \(F \subseteq \text{out } G\). Now \(Q \in G \subseteq \text{out } F\), so \(P \in \text{out } F\) by Theorem SEP.4(A), so that \(P \in \text{out } F\). Therefore \(\text{ins } G \subseteq \text{out } F\).

Finally we show that \(\text{ins } G \subseteq \text{out } F\) is a proper inclusion. The segment \(\overline{RS}\) contains no point of \(G \setminus \overline{CD}\) since \(R\) is the last point of \(G \setminus \overline{CD}\), and no point of \(F \setminus \overline{CD}\) since \(S\) is the first point of \(F \setminus \overline{CD}\) with \(R < S\). By Theorem SEP.4(A), since \(R \in G \subseteq \text{out } F\), \(\overline{RS} \subseteq \text{out } F\); similarly since \(S \in \text{out } G\), \(\overline{RS} \subseteq \text{out } G\). Thus points of \(\overline{RS}\) are in \(\text{out } F\) but not in \(\text{ins } G\), and hence the inclusion \(\text{ins } G \subseteq \text{out } F\) is proper.

By the same argument, with the roles of \(F\) and \(G\) interchanged, \(\text{ins } F \subseteq \text{out } G\) is also a proper inclusion. \(\square\)

Exercise CNT.1 Proof. We prove parts (D), (E), and (F) of Theorem CNT.6.

(D) Let \(C \in \overline{F \cap \text{out } G}\). By Corollary SEP.7.1 there exists a point \(E\) such that \(\overline{CE} \subseteq \text{out } F\). Let \(Q\) be the first point of intersection of \(\overline{CE}\) and \(G\) (or if \(\overline{CE}\) does not intersect \(G\), let \(Q\) be any point of the ray.) If \(E\) is between \(C\) and \(Q\), then \(\overline{CE} \subseteq \text{out } G\); if \(Q\) is between \(C\) and \(E\) let \(P\) be any point between \(C\) and \(Q\); then \(\overline{CP} \subseteq \text{out } G\). In either case, \(\overline{CP} \subseteq \text{out } G \cap \text{out } F\), proving (D).

(E) Let \(C \in \overline{F \cap \text{out } G}\). By Corollary SEP.7.1 there exists a point \(E\) such that \(\overline{CE} \subseteq \text{ins } F\). Let \(Q\) be the first point of intersection of \(\overline{CE}\) and \(G\) (or if \(\overline{CE}\) does not intersect \(G\), let \(Q\) be any point of the ray.) If \(E\) is between \(C\) and \(Q\), then \(\overline{CE} \subseteq \text{out } G\); if \(Q\) is between \(C\) and \(E\) let \(P\) be any point between \(C\) and \(Q\); then \(\overline{CP} \subseteq \text{out } G\). In either case, \(\overline{CP} \subseteq \text{out } G \cap \text{out } F\), proving (E).

(F) Let \(C \in \overline{F \cap \text{ins } G}\). By Corollary SEP.7.1 there exists a point \(E\) such that \(\overline{CE} \subseteq \text{out } F\). Let \(Q\) be the first point of intersection of \(\overline{CE}\) and \(G\); there must be such a point because \(C \in \text{ins } G\). If \(E\) is between \(C\) and \(Q\), then \(\overline{CE} \subseteq \text{ins } G\); if \(Q\) is between \(C\) and \(E\) let \(P\) be any point between \(C\) and \(Q\); then \(\overline{CP} \subseteq \text{ins } G\). In either case, \(\overline{CP} \subseteq \text{ins } G \cap \text{out } F\), proving (F). \(\square\)
Chapter 7

Property PE on a Pasch Plane with Property LUB (LUPE)

Dependencies: Chapters 1, 4, 5, and 6 of Euclidean Geometry and its Sub-geometries (Specht); Axiom LUB

Acronym: LUPE

This chapter might be considered something of a curiosity, or as an addendum to Chapter 6 of Specht, as the proof depends on ordering. In it we prove Property PE on a Pasch plane on which the LUB property holds, as defined in Specht Chapter 18. In that work, Property PE is proved as Theorem NEUT.48(B), part of neutral geometry.

Other than the LUB property, we invoke only the results of Chapters 1, 4, 5, and 6 of Specht. All references in this chapter are to Specht, and there are no references to other chapters of this Supplement. We begin by restating the LUB and PE properties.

Property LUB: Let \(\mathcal{P} \) be a Pasch plane, and let \(\mathcal{L} \) be a line on \(\mathcal{P} \) which is equipped with an ordering \(< \) by Specht Ch.6 Definition ORD.1. If \(\mathcal{E} \subseteq \mathcal{L} \) is a set that is bounded above, then the set of all upper bounds has a minimum, called the least upper bound of \(\mathcal{E} \), and denoted lub(\(\mathcal{E} \)).

Property PE: Given a Pasch plane \(\mathcal{P} \), a line \(\mathcal{L} \) on \(\mathcal{P} \), for every point \(Q \) belonging to \(\mathcal{P} \setminus \mathcal{L} \), there exists a line \(\mathcal{M} \) through \(Q \) which is parallel to \(\mathcal{L} \).

The designation “Property PE” is so named to suggest “Parallel Existence.” There is no claim here of uniqueness—PE falls short of Axiom PS, the “strong form” of the parallel axiom. But if PE is joined with PW (the “weak form”), then we get PS. We name the single theorem in this chapter with the acronym LUPE to suggest both LUB and PE.
Theorem LUPE. If \(P \) is a Pasch plane on which property LUB holds, then property PE holds on \(P \).

Proof. We begin with the assumption that property PE is false on \(P \): that is, there exists a line \(L \) on \(P \) and a point \(Q \) belonging to \(P \setminus L \) such that there is no line \(M \) parallel to \(L \) containing \(Q \). We prove the theorem by a construction and a series of claims; the last of these will show a contradiction with property LUB, thus showing that property PE is true.

The construction: See Figure 7.1 below. Let \(A \) and \(B \) be distinct points of \(L \), and order \(L \) so that \(A < B \). By Specht Ch.5 Theorem PSH.22 there exists a point \(C \in L \) such that \(A \) \(C \) \(B \). By property B.3 of Specht Ch.4 Definition IB.1, there exists a point \(T \) such that \(B \) \(Q \) \(T \).

Using Definition IB.11, since \(B \) \(Q \) \(T \), \(T \) and \(B \) are on opposite sides of \(\overrightarrow{AQ} \); and \(C \) \(B \) are on the same side of \(\overrightarrow{AQ} \); therefore \(T \) and \(C \) are on opposite sides of \(\overrightarrow{AQ} \), and by Specht Ch.5 Theorem PSH.12 there exists a point \(S \) such that \(\overrightarrow{AQ} \cap \overrightarrow{CT} = \{S\} \), that is, \(\overrightarrow{AQ} \cap \overrightarrow{CT} = \{S\} \). Finally, by property B.3 of Definition IB.1, there exists a point \(D \) such that \(S \overrightarrow{T} \overrightarrow{D} \), that is, \(C \overrightarrow{S} \overrightarrow{T} \overrightarrow{D} \).

Since \(A \neq B \), the lines \(\overrightarrow{AQ} \) and \(\overrightarrow{BQ} \) are distinct and have only the point \(Q \) in common. The point \(T \) belongs to a side of \(\overrightarrow{AQ} \) so that \(S \), \(T \), and \(Q \) are noncollinear and are the corners of a triangle.

Ordering: Using the machinery of Chapter 6, order line \(L \) so that \(A < C < B \), and order the line \(\overrightarrow{CT} \) so that \(C < S < T < D \).

Definition of \(\Phi \): For every \(X \in L \) such that the line \(\overrightarrow{XQ} \) intersects \(\overrightarrow{ST} \) define \(\Phi(X) \) so that \(\{\Phi(X)\} = \overrightarrow{XQ} \cap \overrightarrow{ST} \). By this definition, \(\Phi(A) = S \) and \(\Phi(B) = T \).

Claim 1: \(\overrightarrow{ST} \subseteq \text{ins} \angle SQT \), and therefore is a subset of both the \(T \)-side of \(\overrightarrow{SQ} \) and the \(S \)-side of \(\overrightarrow{TQ} \). This follows immediately from Definition PSH.36 and Theorem PSH.37.

Claim 2: If \(X \in L \) and \(X < A \), the ray \(\overrightarrow{QX} \) intersects \(\overrightarrow{ST} \), so that \(\Phi(X) \) is defined, \(S \overrightarrow{\Phi(X)} \overrightarrow{T} \), and \(S < \Phi(X) < T \).

See Figure 7.1. If \(X < A \), \(X \overrightarrow{A} \overrightarrow{C} \overrightarrow{B} \). Since \(T \overrightarrow{Q} \overrightarrow{B} \), \(Q \) and \(B \) are on the same side of \(\overrightarrow{ST} = \overrightarrow{CD} \); hence \(X \) and \(Q \) are on opposite sides of \(\overrightarrow{ST} \) so by
Theorem PSH.12 \(\overrightarrow{ST} \cap \overrightarrow{XQ} \neq \emptyset \). This point of intersection belongs to \(\overrightarrow{XQ} \), and is therefore \(\Phi(X) \), by definition.

Since \(X \rightarrow A \rightarrow C \rightarrow B \), \(X \) is on the \(C \)-side of \(\overrightarrow{BT} = \overrightarrow{TQ} \), which by \(C \rightarrow S \rightarrow T \) is the \(S \)-side. Also, \(X \) is on the side opposite the \(C \)-side of \(\overrightarrow{AQ} = \overrightarrow{SQ} \). Since \(C \rightarrow S \rightarrow T \), this means \(X \in \) the \(T \)-side of \(\overrightarrow{SQ} \). By Definition PSH.36, \(X \in \) ins \(\angle SQT \); by Theorem PSH.39 \(\overrightarrow{QX} \cap \overrightarrow{ST} \neq \emptyset \). As observed just above, this point of intersection is \(\Phi(X) \). Then \(S \rightarrow \Phi(X) \rightarrow T \), and \(S < \Phi(X) < T \) since \(S < T \).

Claim 3: If \(X > B \), by property B.3 of Definition IB.1, there exists a point \(X' \) such that \(X \rightarrow Q \rightarrow X' \); then the ray \(\overrightarrow{QX'} \) intersects \(\overrightarrow{ST} \), so that \(\Phi(X) \) is defined, \(S \rightarrow \Phi(X) \rightarrow T \), and \(S < \Phi(X) < T \).

See Figure 7.2. If \(X > B \), \(A \rightarrow C \rightarrow B \rightarrow X \). Then \(X \) is on the \(B \)-side \((C \)-side) of \(\overrightarrow{AQ} = \overrightarrow{SQ} \). \(X \) is also on the side of \(\overrightarrow{BQ} = \overrightarrow{TQ} \) opposite the \(A \)-side \((the \) \(S \)-side since \(A \rightarrow S \rightarrow Q \)).

Since \(\overrightarrow{XQ} \) intersects \(\overrightarrow{AQ} = \overrightarrow{SQ} \) at the point \(Q \), \(X' \) is on the side of \(\overrightarrow{SQ} \) opposite the \(B \)-side; since \(B \rightarrow Q \rightarrow T \) this means that \(X' \in \) the \(T \)-side of \(\overrightarrow{SQ} \). Since \(\overrightarrow{XQ} \) intersects \(\overrightarrow{BQ} = \overrightarrow{TQ} \) at the point \(Q \), \(X' \) is on the \(S \)-side of \(\overrightarrow{TQ} \).
Then by Definition PSH.36, \(X' \in \text{ins} \angle SQT \); by Theorem PSH.39 (Cross-bar), \(\overrightarrow{QX} \cap \overrightarrow{ST} \neq \emptyset \), and therefore since \(\overrightarrow{QX} \subseteq \overrightarrow{QY} \), \(\overrightarrow{QX} \cap \overrightarrow{ST} \neq \emptyset \). By definition this point of intersection is \(\Phi(X) \). Then \(S \prec \Phi(X) \prec T \); since \(S < T \), by Theorem ORD.6 \(S < \Phi(X) < T \).

Since \(\Phi(A) = S \) and \(\Phi(B) = T \), it follows from Claims 2 and 3 that for every \(X \) such that \(X \leq A \) or \(X \geq B \), \(\Phi(X) \) is defined and belongs to \(\overrightarrow{ST} \).

Claim 4: If \(A \prec X \prec B \) then \(\overrightarrow{QX} \cap \overrightarrow{ST} = \emptyset \), so that \(\Phi(X) \) is not defined.

![Fig. 7.3](image)

See Figure 7.3. Since \(X \in \overrightarrow{AB} \), by Theorem PSH.37 \(X \in \text{ins} \angle AQB \). By Theorem PSH.38(B) \(\overrightarrow{QX} \in \text{ins} \angle AQB \), and by Definition PSH.36 \(\overrightarrow{QX} \) is a subset of the \(A \)-side of \(\overrightarrow{BQ} \), and also of the \(B \)-side of \(\overrightarrow{AQ} \). Now \(S \in \overrightarrow{QA} \subseteq \overrightarrow{AQ} \), \(T \in \text{the } T \text{-side of } \overrightarrow{AQ} \), and \(\overrightarrow{ST} \subseteq \text{ins} \angle SQT \subseteq \text{the } T \text{-side of } \overrightarrow{AQ} \), so that \(\overrightarrow{ST} \) is a subset of \(\overrightarrow{AQ} \) and the \(A \)-side of \(\overrightarrow{AQ} \). This last being the side opposite the \(B \)-side. It follows that \(\overrightarrow{QX} \cap \overrightarrow{ST} = \emptyset \).

Let \(X' \) be a point such that \(X' \prec Q \prec X \); since \(\overrightarrow{QX} \) and \(\overrightarrow{BQ} \) intersect at \(Q \), \(X' \) belongs to the side of \(\overrightarrow{BQ} \) opposite \(A \), and by Theorem IB.14, this side contains \(\overrightarrow{QX} \). By reasoning similar to that just above, \(\overrightarrow{ST} \subseteq \overrightarrow{BQ} \cap \text{the } A \text{-side of } \overrightarrow{BQ} \). Therefore \(\overrightarrow{QX'} \cap \overrightarrow{ST} = \emptyset \).

Now \(\overrightarrow{XX'} = \overrightarrow{QX} = \overrightarrow{QX} \cup \overrightarrow{QX'} \cup \{Q\} \). Since \(Q \notin \overrightarrow{ST} \) it follows that \(\overrightarrow{XX'} \cap \overrightarrow{ST} = \emptyset \).

Claim 5: If \(X \) and \(Y \) are members of \(\mathcal{L} \) and \(X < Y < A \), then \(S \prec \Phi(Y) \prec \Phi(X) \prec T \), and \(S < \Phi(Y) < \Phi(X) < T \).
First we note that from Claim 2, \(S\Phi(Y)\not\subset T\) and \(S < \Phi(Y) < T\), and also \(S\Phi(X)\not\subset T\) and \(S < \Phi(X) < T\).

If, in the statement and proof of Claim 2, we substitute \(Y\) for \(A\), so that \(S = \Phi(A)\) becomes \(\Phi(Y)\), we get a proof that \(\Phi(Y)\not\subset T\); combining this with \(S\Phi(Y)\not\subset T\) yields the desired result.

Claim 6: If \(X\) and \(Y\) are members of \(L\) and \(B < X < Y\), then \(S\Phi(Y)\not\subset T\), and \(S < \Phi(Y) < \Phi(X) < T\).

Again we note that from Claim 3, \(S\Phi(Y)\not\subset T\) and \(S < \Phi(Y) < T\); also \(S\Phi(X)\not\subset T\) and \(S < \Phi(X) < T\).

If, in the statement and proof of Claim 3, we substitute \(Y\) for \(X\), and substitute \(X\) for \(B\), so that \(T = \Phi(B)\) becomes \(\Phi(X)\), we get a proof that \(S\Phi(Y)\not\subset T\); combining this with \(S\Phi(X)\not\subset T\) yields the desired result.

Claim 7: For every \(X \leq A\) and every \(Y \geq B\), \(\Phi(X) < \Phi(Y)\), so that the set \(\{\Phi(Y) \mid Y \geq B\}\) is the set of upper bounds for \(\{\Phi(X) \mid X \leq A\}\).

See Figure 7.4. If \(X = A\) and \(Y = B\), then \(\Phi(X) = S < T = \Phi(Y)\).

If \(X = A\) and \(Y > B\) then by Claim 3, \(\Phi(X) = \Phi(A) = S < \Phi(Y)\).

If \(Y = B\) and \(X < A\) then by Claim 2, \(\Phi(X) < T = \Phi(B) = \Phi(Y)\).

The only case needing more proof is where \(X < A\) and \(B < Y\). By Claim 3, \(\Phi(Y)\) is the intersection of \(\overrightarrow{QY}\) with \(\overrightarrow{ST}\) and \(S\Phi(Y)\not\subset T\); by Claim 2, \(\Phi(X)\) is the point of intersection of \(\overrightarrow{QX}\) with \(\overrightarrow{ST}\), and \(S\Phi(X)\not\subset T\).

Since \(X\not\subset C\not\subset B\not\subset Y\), the \(X\)-side of \(\overrightarrow{QY}\) is also the \(C\)-side; by the construction and Claim 3, \(C\Phi(Y)\not\subset T\), so that the \(C\)-side is also the \(S\)-side of \(\overrightarrow{QY}\), and this is opposite the \(T\)-side. Therefore \(\Phi(X)\in S\Phi(Y)\not\subset T\) which is opposite the \(T\)-side.

\[\text{Fig. 7.4 For Claim 7 in Theorem LUPE.}\]
It follows from Theorem PSH.12 that $\Phi(X)\bar{T}$ intersects $\bar{Q}Y$ and since $\Phi(X)\bar{T}$ is a subset of \bar{ST}, this point of intersection is $\Phi(Y)$. Therefore $\Phi(X)\rightarrow \Phi(Y)\rightarrow \bar{T}$. Combining this with $S\leftarrow \Phi(X)\rightarrow \bar{T}$ we have $S\leftarrow \Phi(Y)\rightarrow \bar{T}$. Since $S < T$, by Theorem ORD.6 $\Phi(X) < \Phi(Y)$.

Claim 8: The mapping Φ is a bijection of $\{X \mid X \leq A \text{ or } X \geq B\}$ onto \bar{ST}.

By Claim 4 every point X for which $\Phi(X)$ is defined must either satisfy $X \leq A$ or $X \geq B$. Suppose $X \neq X'$ are such points; if both $X \leq A$ and $X' \leq A$, by Claims 2 and 5 $\Phi(X) \neq \Phi(X')$; if both $X \geq B$ and $X' \geq B$, by Claims 3 and 6 $\Phi(X) \neq \Phi(X')$; if $X \leq A$ and $X' \geq B$, by Claim 7 $\Phi(X) \neq \Phi(X')$. Therefore Φ is a one-to-one mapping defined on $\{X \mid X \leq A \text{ or } X \geq B\}$.

Now let Z be any point of \bar{ST}; then the line \bar{ZQ} intersects \mathcal{L} at some point, because, by the negation of property PE, it cannot be parallel to \mathcal{L}. By Claim 4 there can be no point $X \in \overline{AB}$ such that $\Phi(X)$ is defined. Therefore every point of \bar{ST} is an image point of some X such that either $X \leq A$ or $X \geq B$.

Claim 9: If Axiom LUB holds, the assumption that there is no line through Q which is parallel to \mathcal{L} yields a contradiction. By Claim 7, $\{\Phi(Y) \mid Y \geq B\}$ is the set of upper bounds for $\mathcal{E} = \{\Phi(X) \mid X \leq A\}$. Let U be the least upper bound for \mathcal{E}. Since there are upper bounds for \mathcal{E} which belong to \bar{ST}, $U \in \bar{ST}$. Moreover, $U \neq S$ since \mathcal{L} contains a point $X < A$, for which $\Phi(X) > S$; also $U \neq T$, because \mathcal{L} contains a point $Y > B$ for which $\Phi(Y) < T$, so that $\Phi(Y)$ is an upper bound for \mathcal{E}.

It follows that either $\Phi^{-1}(U) < A$ or $\Phi^{-1}(U) > B$.

If the former, by property B.3 of Definition IB.1 there exists a point Y of \mathcal{L} such that $Y \leftarrow \Phi^{-1}(U) \rightarrow A$, that is, $Y < \Phi^{-1}(U) < A$. Then by Claim 5, $\Phi(Y) > U > \Phi(A) = S$. But $\Phi(Y) \in \{\Phi(X) \mid X \leq A\}$ so that U is not an upper bound for this set, contradicting Axiom LUB.

If $B < \Phi^{-1}(U)$, by property B.3 of Definition IB.1 there exists a point Y of \mathcal{L} such that $B \leftarrow \Phi^{-1}(U) \rightarrow Y$, that is, $B < \Phi^{-1}(U) < Y$. Then by Claim 6, $T = \Phi(B) > U > \Phi(Y)$. But $\Phi(Y) \in \{\Phi(X) \mid X \geq B\}$ and is therefore an upper bound for $\{\Phi(X) \mid X \leq A\}$, and U is not the least upper bound for this set. Again, this is a contradiction. □
Chapter 8
Existence of Midpoints in the Presence of a Parallel Axiom (NEUTM)

Dependencies: Chapters 1, 4, 5, 6, 7, and 8 from Euclidean Geometry and its Subgeometries (Specht); Axiom PW

Acronym: NEUTM

Property R.6 of Specht Ch.8 Definition NEUT.2 says that every segment in a neutral plane has a midpoint. In this short chapter we prove this as a theorem from the other properties (R.1 through R.5) of this definition, in the case that one of the parallel axioms holds, either Axiom PW or PS.

If we had been able to prove this without invoking a parallel axiom, we could have eliminated Property R.6 from Definition NEUT.2.

All references in this chapter of the Supplement are to Specht; many of them are to Chapter 8 (neutral geometry), but none of them cite anything in that chapter after Theorem NEUT.48. There are no references to other chapters of this Supplement.

For the record, we restate Definition NEUT.85 from Specht Chapter 8: A triangle \mathcal{T} is right iff an angle of \mathcal{T} is right. In the first theorem below we provide an alternate characterization of an acute angle, and prove some preliminary lemmas, some of which duplicate theorems and exercises from Chapter 8 of Specht.
Theorem NEUTM.1 An angle $\angle BAC$ is acute according to Definition NEUT.81 iff there exists a point Q such that $\angle BAQ$ is right and $C \in \text{ins} \angle BAQ$.

Proof. If $\angle BAC$ is acute according to Definition NEUT.81, there exist non-collinear points E, D, and F such that $\angle BAC < \angle EDF$ and $\angle EDF$ is right. By Definition NEUT.70 there exists a point $P \in \text{ins} \angle EDF$ such that $\angle BAC \cong \angle EDP$. By Theorem NEUT.38 let α be the isometry such that $\alpha(\angle EDP) = \angle BAC$ and $\alpha([DE]) = [AB]$ and $\alpha([DP]) = [AC]$. Then let $Q = \alpha(F)$. By Corollary NEUT.44.2 $\alpha(\angle EDF) = \angle BAQ$ is right, and by Theorem NEUT.15(11), $C \in \text{ins} \angle BAQ$.

Conversely, suppose there exists a point Q such that $\angle BAQ$ is right and $C \in \text{ins} \angle BAQ$. Since $\angle BAQ \cong \angle BAQ$ and $\angle BAC \cong \angle BAC$, by Definition NEUT.70 $\angle BAC < \angle BAQ$. Since $\angle BAQ$ is right, by Definition NEUT.81, $\angle BAC$ is acute. \qed

Lemma NEUTM.2 (cf Theorem NEUT.84) If A, B, and C are non-collinear points on a neutral plane, and if $\angle BAC$ is right, then $\angle ABC$ and $\angle ACB$ are both acute.

Proof. Let P be a point on the C-side of \overrightarrow{AB} such that $\angle ABP$ is right, and let A' be such that $A'B = A$. Then by Theorem NEUT.47(A) $\overrightarrow{BP} \parallel \overrightarrow{AC}$. Since C and P are on the same side of \overrightarrow{AB}, by Exercise PSH.32 either $C \in \overrightarrow{BP}$ or $C \in \text{ins} \angle ABP$ or $C \in \text{ins} \angle A'BP$.

If $C \in \text{ins} \angle A'BP$ then by Definition PSH.36 $C \in A'$-side of \overrightarrow{BP} and by Theorem PSH.12 (Plane Separation Theorem), \overrightarrow{AC} must intersect \overrightarrow{BP} which is impossible since $\overrightarrow{BP} \parallel \overrightarrow{AC}$. If $C \in \overrightarrow{BP}$ then both \overrightarrow{AC} and \overrightarrow{BP} are lines perpendicular to \overrightarrow{AB} and containing C, so that by Theorem NEUT.47(B) these are the same line; then $A = B$ which contradicts the hypothesis that A, B, and C are noncollinear (and hence distinct). Therefore $C \in \text{ins} \angle ABP$ and $\angle ABC$ is acute. Similar reasoning, interchanging B and C, shows that $\angle ACB$ is acute. \qed

Lemma NEUTM.3 (cf Exercise NEUT.20) Let $\triangle ABC$ be a right triangle where $\angle BAC$ is the right angle; then if $E \in \overrightarrow{BC}$ and $\overrightarrow{EA} \perp \overrightarrow{BC}$, $\overrightarrow{B-E-C}$. That is, E lies on the hypotenuse, but is not one of its endpoints.

Proof. If the conclusion is false, either $E = B$, $E = C$, $\overrightarrow{B-C-E}$ or $\overrightarrow{E-B-C}$.

If \(E = B \) then \(\overrightarrow{AB} \perp \overrightarrow{BC} \) so that by Theorem NEUT.47(A), \(\overrightarrow{BC} \parallel \overrightarrow{AC} \); this is impossible because a triangle has three corners, so \(E \neq B \). A similar argument shows that \(E \neq C \).

If \(C \leftarrow B \rightarrow E \) let \(D \) be any point on the \(A \)-side of \(\overrightarrow{BC} \) such that \(\angle CBD \) is right. Then since \(\angle CBA \) is acute (by Lemma NEUTM.2), there exists a point \(Q \) such that \(\angle CBQ \) is right and \(A \in \text{ins} \angle CBQ \). Then by Definition PSH.36 \(A \) lies on the \(Q \)-side of \(\overrightarrow{BC} \); by Theorem NEUT.48(A) there is only one line through \(B \) which is perpendicular to \(\overrightarrow{BC} \) and both \(Q \) and \(D \) belong to this line; moreover, both these points are on the \(A \)-side of \(\overrightarrow{BC} \). Therefore \(\overrightarrow{BD} = \overrightarrow{BQ} \) and \(\angle CBQ = \angle CBD \), so by Theorem NEUTM.1 \(A \in \text{ins} \angle CBD \), and \(A \in \overrightarrow{BDC} \).

Now \(\overrightarrow{BD} \perp \overrightarrow{BC} \) and \(\overrightarrow{EA} \perp \overrightarrow{BC} \) so that by Theorem NEUT.47(A) \(\overrightarrow{BD} \parallel \overrightarrow{EA} \). Since \(C \leftarrow B \rightarrow E \), \(E \) is on the side of \(\overrightarrow{BD} \) opposite \(C \) so by Theorem PSH.12 (Plane Separation), \(\overrightarrow{EA} \) and \(\overrightarrow{BD} \) must intersect, contradicting their parallelism. Thus \(C \leftarrow B \rightarrow E \) is false. A similar proof shows that \(B \leftarrow C \rightarrow E \) is false. \(\square \)

Lemma NEUTM.4 Let \(\angle ACB \) and \(\angle ADB \) be two right angles on a neutral plane, where \(C \) and \(D \) are on the same side of \(\overrightarrow{AB} \). Then neither \(C \in \text{ins} \angle ADB \) or \(D \in \text{ins} \angle ACB \).

![Fig. 8.1](image) For Lemma NEUTM.4.

Proof. See Figure 8.1. If \(D \in \text{ins} \angle ACB \), by Definition PSH.36, \(D \in \overrightarrow{A} \)-side of \(\overrightarrow{BC} \) and the \(B \)-side of \(\overrightarrow{AC} \). Since \(D \in \overrightarrow{C} \)-side of \(\overrightarrow{AB} \), \(D \in \text{ins} \angle ABC \). By Theorem PSH.40, \(\overrightarrow{AC} \subseteq \text{ins} \angle ABC \); by Theorem PSH.39, there exists a point \(F \) of intersection of \(\overrightarrow{AC} \) and \(\overrightarrow{BD} \), so that \(A \leftarrow F \rightarrow C \). By Corollary 2 of Theorem PSH.39, \(C \) is on the side of \(\overrightarrow{BD} \) opposite \(A \). A similar argument will show that \(C \) is on the side of \(\overrightarrow{AD} \) opposite \(B \).
Let \(E = \text{ftp}_R(D, \overrightarrow{AC}) \). Apply Lemma NEUTM.3 to \(\triangle ADF \); since \(\angle ADF \) is right, \(A = E = F \) and hence \(A = E = F = C \), so \(E \in A\)-side of \(\overrightarrow{BD} \). Let \(E' = \text{ftp}_R(D, \overrightarrow{E}) \); then \(E' \in C\)-side of \(\overrightarrow{BD} \). Since \(B = D = F \) and \(F \) is on the opposite side of \(\overrightarrow{DE} \) to \(A, B \in A\)-side of \(\overrightarrow{DE} \).

Now \(\overrightarrow{CB} \perp \overrightarrow{AC} \) and \(\overrightarrow{DE} \perp \overrightarrow{AC} \) so by Theorem NEUT.47(A) \(\overrightarrow{CB} \parallel \overrightarrow{DE} \).

But \(B \) and \(C \) are on opposite sides of \(\overrightarrow{DE} \), so that \(\overrightarrow{CB} \) intersects \(\overrightarrow{DE} \), contradicting their parallelism. Therefore \(D \not\in \angle ACB \); interchanging \(C \) and \(D \) in the above argument shows that \(C \not\in \angle ADB \). \(\square \)

Theorem NEUTM.5 Let \(C, D, E, F \) be points on the neutral plane such that

1. \(\angle CED \) and \(\angle CFD \) are right angles, and \(\overrightarrow{EF} \) is the line of symmetry for both; and
2. \(E \) and \(F \) are on opposite sides of \(\overrightarrow{CD} \).

Then

(A) \(\angle CED \cong \angle CFD \) and \(\overrightarrow{CD} \perp \overrightarrow{EF} \);

(B) if \(\{H\} = \overrightarrow{CD} \cap \overrightarrow{EF}, \ E \overline{H} \cong \overline{FH}, \ C \overline{H} \cong \overline{DH}, \text{ and } E \overline{C} \cong \overline{FC} \cong \overline{ED} \cong \overline{FD} \).

Proof. First note that the first conclusion of (A) follows from Euclid’s fourth postulate, Theorem NEUT.69, but in this chapter we are not assuming anything from our development after Theorem NEUT.48, so this needs to be proved.

Since \(\overrightarrow{EF} \) is the line of symmetry for both \(\angle CED \) and \(\angle CFD \), \(R_{\overrightarrow{EF}}(\overrightarrow{FC}) = \overrightarrow{FD} \) and \(R_{\overrightarrow{EF}}(\overrightarrow{EC}) = \overrightarrow{ED} \); then by elementary mapping theory

\[
\{ R_{\overrightarrow{EF}}(C) \} = R_{\overrightarrow{EF}}(\overrightarrow{FC} \cap \overrightarrow{EC}) = R_{\overrightarrow{EF}}(\overrightarrow{FC}) \cap R_{\overrightarrow{EF}}(\overrightarrow{EC}) = (\overrightarrow{FD}) \cap (\overrightarrow{ED}) = \{ D \}.
\]

By Theorem NEUT.22(A), \(\overrightarrow{CD} \) is a fixed line for \(R_{\overrightarrow{EF}} \) and \(\overrightarrow{CD} \perp \overrightarrow{EF} \). Now \(H, E, F \) all belong to \(\overrightarrow{EF} \), so are fixed points for \(R_{\overrightarrow{EF}} \); since \(R_{\overrightarrow{EF}}(C) = D \), by Theorem NEUT.15(5) \(EC \cong ED, FC \cong FD, \text{ and } HC \cong HD \).

By Theorem NEUT.44, \(\overrightarrow{CD} \) is a line of symmetry for \(\overrightarrow{EF} \). Let \(B = R_{\overrightarrow{CD}}(E) \); then \(B \) is a point on \(\overrightarrow{EF} \) because \(\overrightarrow{EF} \) is a fixed line for \(R_{\overrightarrow{CD}} \). Then \(F \) and \(B \) are on the same side of \(\overrightarrow{CD} \) because they are both in the side opposite \(E \), and are both on the same side of \(H \). By Corollary NEUT.44.1 \(\angle CBD \) is a right angle since it is congruent to \(\angle CED \). We prove that \(B = F \).

Suppose otherwise, that \(B \neq F \); by Theorem PSH.38 \(\overrightarrow{HF} = \overrightarrow{HB} \). By Definition IB.4 exactly one of \(H \overline{F} \overline{B}, H \overline{B} \overline{F}, \text{ or } B = F \) is true.
If $H-F-B$, then $F \in \overrightarrow{BH}$; since $H \in \overrightarrow{CD}$, by Theorem PSH.40 $H \in \text{ins } \angle CBD$ and hence $F \in \text{ins } \angle CBD$. By Lemma NEUTM.4, this is impossible. Likewise, $H-B-F$ is impossible. Therefore $F = B = R_{\overrightarrow{CD}}(E)$; since H, C, and D are all fixed points for $R_{\overrightarrow{CD}}$, it follows from Theorem NEUT.15(5) that $\overrightarrow{EC} \cong \overrightarrow{FC}$, $\overrightarrow{ED} \cong \overrightarrow{FD}$, and $\overrightarrow{HE} \cong \overrightarrow{HF}$. \square

Theorem NEUTM.6 If either Axiom PW or PS holds, every segment \overline{AB} on a neutral plane has a midpoint; this result is independent of Property R.6 of Definition NEUT.2.

![Fig. 8.2](image)

Fig. 8.2 For Theorem NEUTM.6.

Proof. See Figure 8.2. Let C and D be points on the same side of \overrightarrow{AB} such that $\overrightarrow{AC} \perp \overrightarrow{AB}$ and $\overrightarrow{BD} \perp \overrightarrow{AB}$. Let \mathcal{L} and \mathcal{M} be the lines of symmetry of $\angle BAC$ and $\angle BAD$ respectively.

By Theorem NEUT.47(A), $\overrightarrow{AC} \parallel \overrightarrow{BD}$. If \mathcal{L} does not intersect \overrightarrow{BD}, then the two lines are parallel; both \overrightarrow{AC} and \mathcal{L} contain A and are parallel to \overrightarrow{BD}. This is impossible by either Axiom PS or PW. Therefore \mathcal{L} intersects \overrightarrow{BD} at some point X. By Theorem NEUT.20(E) \mathcal{L} contains a point $P \in \text{ins } \angle CAB$ and $\overrightarrow{AP} \subseteq \text{ins } \angle BAC$. Since \mathcal{L} intersects \overrightarrow{AC} at A, all points of the opposing ray are on the side of \overrightarrow{AC} opposite B so that $X \in \overrightarrow{AP} \subseteq \text{ins } \angle BAC$. Therefore X belongs to the C-side, that is, the D-side of \overrightarrow{AB}, and thus $X \in \overrightarrow{BD}$.

By Theorem PSH.37 $\overrightarrow{AX} \subseteq \text{ins } \angle ABD$; by Corollary PSH.39.2 A and X are on opposite sides of \mathcal{M}; thus by Theorem PSH.12 (Plane Separation) $\overrightarrow{AX} \subseteq \overrightarrow{AX}$ intersects \mathcal{M} at some point E.

Reflect the lines \mathcal{L} and \mathcal{M}, and the points C, D, and E in \overrightarrow{AB}. Let $\mathcal{L}' = R_{\overrightarrow{AB}}(\mathcal{L})$, $\mathcal{M}' = R_{\overrightarrow{AB}}(\mathcal{M})$, and $E' = R_{\overrightarrow{AB}}(E)$. Then $\angle ABE' \cong \angle ABE$, and by Theorem NEUT.39, $\angle ABE \cong \angle EBD$; by Theorem NEUT.14, $\angle EBD \cong \angle ABE \cong \angle ABE'$. By Exercise NEUT.40(A), $\angle EBE' \cong \angle ABD$, and therefore $\angle EBE'$ is a right angle. Similarly, $\angle EAE'$ is a right angle, and
both these angles have \overrightarrow{AB} as their common line of symmetry. Let H be the intersection of $\overrightarrow{EE'}$ with \overrightarrow{AB}. Then by Theorem NEUTM.5, $\overrightarrow{AH} \cong \overrightarrow{BH}$, so that H is a midpoint of \overrightarrow{AB}. \qed

Remark NEUTM.7 We would be most grateful if a reader with more perspicacity than we should come up a proof of the existence of midpoints using only properties R.1 through R.5 of Definition NEUT.2 without invoking parallelism; this would make it possible, in the main development of Specht to dispense with Property R.6 of this definition.
References

Index

\(\overrightarrow{AB} \), arc subtending \(\angle AOB \), 104
\(f[a, b] \), arc generated by \(f \), 56
\(\mathcal{C}(0, 0); 1 \), unit circle, 79
\(\mathcal{C}(0, 0); r \), circle with radius \(r \), 79
\(\mathcal{L}(f[a, b]) \), arc length of \(f \) over \([a, b] \), 58
\(\mathcal{V}(\varphi[a, b]) \), total variation of \(\varphi \) over \([a, b] \), 60
\(\cdot \), inner product of vectors, 19
\(\cdot \), product of complex numbers, 42, 43
\(\mathcal{S}_P(f) \), summation of \(f \) over partition \(P \), 57

absolute value
of a complex number, 50
acronym
\(AM \), angle measure, 104–111
\(ARC \), arc and arc length, 56–67
\(CNT \), connected, 180–185
\(CNV \), convex, 144–180
\(CS \), cos and sin, 71–99
\(CX \), complex numbers, 42–51
\(JCT \), Jordan Curve Theorem, 114–115
\(LUPE \), parallel lines from LUB, 189–194
\(PLGN \), polygon, 115–130
\(SEP \), separation, 128–144
\(VEC \), vector space, 2–29
addition
of points on a plane, 2–3
affine mapping
and collineation, 25–29
on a vector space, 25–29
angle
central, of a circle, 104
measure, radian, 104
angle measure, 104–111
is additive, 107
of exterior angle of a triangle, 108
radian, 104
arc, 56
closed, 56
generated by function \(f \), 56
of a circle, 104
rectifiable, 57
subtending angle, 104
arc length, 57
additive property of, 59
integral form for, 64
is bicontinuous bijection, 66
arithmetic
of complex numbers, 42
on a plane, 2–4
basis (of a vector space), 10
bound
least upper, 189
bounded variation
function of, 60
circle, 79
central angle, 104
circumference of, 79
diameter of, 79
enclosure of, 79

203
inside of, 79
radius of, 79
unit, 79
circular functions, see cos, sin
cis
definition of mapping, 80
is continuous, 81
maps \([0, 2\pi]\) onto the unit circle, 81
coh, convex hull (of a set), 162
complex number, 42–51
conjugate, 50
modulus or absolute value, 50
real and imaginary part, 48
congruent (integers) (mod \(m\)), 118
conjugate (of a complex number), 50
coordinate, first and second, 6
cordinatization
left-handed, right-handed, 5
map, an isomorphism, 9–10
of a Euclidean/LUB plane, 4–7
corner
of polygon, regular and irregular, 172
cos, sin
basic properties, 75–78
composite argument formulae, 94
definition, 71–75
derivatives, 76
formulas for definition, 75
maxima and minima, 77
periodic of period \(2\pi\), 80
traditional angle definition, 94
cosine function, see cos, sin
curve, see arc
determinant (of a matrix), 22–23
dimension (of a vector space), 10
divisible, 118
dot (inner) product (of two vectors), 19
cenc, enclosure
of a polygon, 130
dot (inner) product (of two vectors), 19
eexc, enclosure
of a polygon, 130
exiting intersection, 129
extremal corners (of a polygon), 165
extremal points (of a finite set), 178
free segment
identification with a real number, 16
fudge theorem (for simple polygons), 126
function, mapping
circular, see cos, sin
of bounded variation, 60
periodic, 77
total variation of, 60
gauge, of a partition \(P\), 57
group
Euclidean/LUB plane under +, 2
of all bijective linear mappings under composition, 24
of all collineations of \(\mathbb{R}^2\) with fixed point \((0, 0)\), 27
of complex numbers over ·, 45
vector space under +, 7
homeomorphism, bicontinuous bijection, 56
horizontal line, 12
imaginary part
of a complex number, 48
inner product (of vectors), 19
ins, inside
of a polygon, 123, 130
integral form for arc length, 64
intersection
of angle and segment, 127
of angle with segment, entering and exiting, 129
of polynomial and admissible angle, 144
of segments and rays, 115–118
isometry
preserves angle measure, 105–107
preserves arc length, 86
isomorphism
coordinatization map, 9–10
of real numbers and a line, 15
Index

vector space, 9

Jordan Curve Theorem
for a simple polygon, 114
for simple polygons, 185
introduction, 114
Jordan, Camille, 114

labeling function, 119
least upper bound, 189
left-handed coordinatization, 5
line
 horizontal, 12
 slope of, 13
 vertical, 12
linear
 mapping (transformation, operator), 20–25
 space, see vector space
 transformation (mapping, operator), 20–25
linearly independent (vectors), 10
LUB, least upper bound, 189

matrix (of a linear mapping), 21–23
midpoint
 existence without Property R.6 of
 Definition NEUT.2, 200
 existence without Property R.6 of
 Definition NEUTM.2, 195
modular numbering, 118–119
modulus
 of a complex number, 50
multiplication
 of complex numbers, 42, 43
norm (length) of a vector, 16
 properties of, 18
normal
 corner of a polygon, 166
 point of a finite set, 179
ordered pair, triple
 vector space of ordered pairs, 6
 vector space of ordered triples, 11
orthogonal vectors, 19
out, outside
 of a polygon, 123, 130
parallel
 Property PE, parallels exist, 189
parity, odd and even
 of a point, 130–138
partition
 finite subset of of [a, b], 56
 gauge of, 57
 refinement of, 57
path, see polygonal path
periodic function, 77
polygon
 j-corner of, 119
 j-edge of, 119
 adjacent corners of, 119
 adjacent edges of, 120
 admissible angle, 123
 admissible ray, 123
 corner, regular and irregular, 172
 enclosure of, 130
 exclosure of, 130
 inside of, 130
 outside of, 130
 simple, 119
 simple, separates the plane, 137
polygonal path, 120
 connecting two points, 120
 endpoints, 120
 loop, 122
 simple, 120
 simplification, 122
 subpath, 120
polygonally connected (set), 120
product
 of complex numbers, 42, 43
Property PE, parallels exist, 189
Pythagorean theorem, 17
radian angle measure, 104
ray
 test, 131
real part
 of a complex number, 48
rectifiable arc, 57
 arc length of, 57
right-handed coordinatization, 5
rotation
 analytic forms, 95–96
 is a rigid motion, 89–91
rotund (polygon), 145

scalar product (multiple)
 on a plane, 3
separates (the plane), 137
set
 polygonally connected, 120
sides of a line intersecting a circle, 82–86
sin, see cos, sin
sine function, see cos, sin
slope of a line, 13
square root, of a distance, 110
sum
 of points on a plane, 2–3
summation
 of f over partition P, 57
supporting edge (of a polygon), 145
supporting line
 basic, 165
 of a finite set, 177
 of a polygon, 145
total variation of function, 60
 additive property of, 61
 continuity, 61
 nondecreasing property of, 61
translation
 on coordinate plane, 96–99
triangle
 sum of angles is π, 108
Ulrich, F. E., 114
unit circle, 79
 and cos and sin, 79
variation
 total, of function, 60
vector
 orthogonal, 19
vector space
 basis, 10
 dimension, 10
 isomorphism, 9
 over real numbers, 7–29
 scalars, 7
 subspace, 8
vertical line, 12
Euclidean Geometry and its Subgeometries
Specht, E.J.; Jones, H.T.; Calkins, K.G.; Rhoads, D.H.
2015, XIX, 527 p. 59 illus., Hardcover
ISBN: 978-3-319-23774-9
A product of Birkhäuser Basel