Errata for the monograph
Semi-Discretization for Time-Delay Systems –
Stability and Engineering Applications
by T. Insperger and G. Stépán

May 10, 2013

A few errors have been identified by users of the book. This document serves as a summary of the main typos and other types of mistakes in the book.

List of corrections

Page 4: Figure 1.1 in page 4 should be:

\begin{center}
\begin{tabular}{cc}
\text{(a)} & \text{(b)} \\
\includegraphics[width=0.2\textwidth]{fig1a.pdf} & \includegraphics[width=0.2\textwidth]{fig1b.pdf}
\end{tabular}
\end{center}

\textbf{Fig. 1.1} Critical characteristic exponents for linear autonomous ODEs: (a) Hopf bifurcation, (b) and saddle-node bifurcation.

Page 11: Equation (1.36) should read:

\[
\text{Ker}(\mu I - \mathcal{U}(T)) \setminus \{0\} \neq \emptyset, \quad \mu \neq 0,
\]

Page 22: Equation (2.48) should read:

\[
\text{if } \omega \tau \neq k\pi, \ k \in \mathbb{N}: \quad a_0 = \omega^2 - \frac{a_1 \omega \cos(\omega \tau)}{\sin(\omega \tau)}, \quad b_0 = \frac{-a_1 \omega}{\sin(\omega \tau)}.
\]

Page 23: Equation (2.52) should read:

\[
\text{if } \omega = 0: \quad k_p = -a_0, \quad k_d \in \mathbb{R},
\]

Page 61: Equation (3.109) should read:

\[
y(t) = \tilde{y}_0 + \tilde{y}_1 t + \tilde{y}_2 t^2 + \cdots,
\]
Page 61: Equation (3.111) should read:
\[ B_j(t) = \tilde{B}_{j,0} + \tilde{B}_{j,0}t + \tilde{B}_{j,0}t^2 + \cdots, \]

Page 61: The sentence before equation (3.113) should read:
According to (3.71), \(|\tau_{j,0} - r_{j,0}| < (1 + \frac{1}{2}q)h\), where \(q\) is the order of the approximation of the delayed term.

Page 61: Equation (3.114) should read:
\[ |\tilde{\tau}_{j,0} - r_{j,0}| < \left(1 + \frac{1}{2} q + \frac{1}{2} \tilde{\tau}_{j,1}\right) h + \mathcal{O}(h^2). \]

Page 97: Equation (5.17) should read:
\[ \Omega = \frac{30\omega}{j\pi - \arctan\left(\frac{\omega^2 - \omega_n^2}{2\zeta\omega_n\omega}\right)}, \quad j = 0, 1, 2, \ldots, \]

Page 98: Figure 5.3 should be:

![Stability Chart](image)

**Fig. 5.3** Stability chart and the number of unstable characteristic exponents for (5.13) with \(\zeta = 0.05\).

Page 98: The sentence after equation (5.19) should read:
As can be seen, (5.17) and (5.18) give a pair of D-curves for each integer \(j \geq 1\), one in the domain \(H > 0\) associated with \(\omega > \omega_n\) and one in the domain \(H < 0\) associated with \(\omega < \omega_n\).

Page 101: The sentences after equation (5.28) should read:
Figure 5.6 shows the stability chart in the plane of the dimensionless mean specific cutting-force coefficient \(H_0/\omega_n^2\) and the dimensionless mean spindle speed \(\Omega_0/(60f_n)\) for the high spindle speed domains (for lobes of indices \(j = 1, 2, 3, 4, 5\)). A sinusoidal spindle speed modulation was considered, i.e., \(\Omega(t) = \Omega_0 + \Omega_1 \sin(2\pi t/T)\). The damping ratio was \(\zeta = 0.02\).
Page 105: Equation (5.32) should read

\[ g_j(t) = \begin{cases} 1 & \text{if } \varphi_{en} < (\varphi_j(t) \mod 2\pi) < \varphi_{ex}, \\ 0 & \text{otherwise}, \end{cases} \]

Page 115: Equation (5.63) should read

\[ g_j(t, z) = \begin{cases} 1 & \text{if } \varphi_{en} < (\varphi_j(t, z) \mod 2\pi) < \varphi_{ex}, \\ 0 & \text{otherwise,} \end{cases} \]

Page 119: Equation (5.80) should read:

\[ \varphi_j(t) = \frac{2\pi}{60} \int_0^t \Omega(s)Ds + j \frac{2\pi}{N}. \]

Page 121: The label on the horizontal axes in the subplots of Figure 5.17 should be \( \Omega_0 \) [krpm]. The label on the horizontal axes in the subplots of Figure 5.18 should be \( \Omega_0 \) [rpm].

Page 133: The sentence after equation (5.139) should read:

where \( T_p = \pi \sqrt{2l/(3g)} \) is the period of the small oscillations of the structure about its downward equilibrium.

Page 133: Equation (5.141) should read

\[ g(t) = \begin{cases} 0 & \text{if } 0 \leq (t \mod T) < t_w, \\ 1 & \text{if } t_w \leq (t \mod T) < t_w + t_a = T, \end{cases} \]

Page 139: Equation (5.155) should read

\[ Q_{akw} = \begin{cases} F_d & \text{if } 0 \leq (t \mod T) < t_w, \\ F_d - k_p(F_m(t - \tau) - F_d) & \text{if } t_w \leq (t \mod T) < t_w + t_a = T. \end{cases} \]

Page 154: The sentence before equation (A.28) should read:

The system is asymptotically stable (i.e., all the zeros of the polynomial (A26) have negative real part) if and only if \( a_0 > 0 \) and all the leading principal minors of \( H \) are positive.

Page 154: Equation (A.30) should read:

\[ H_3 = \det \begin{pmatrix} a_1 & a_0 & 0 \\ a_3 & a_2 & a_1 \\ a_5 & a_4 & a_3 \end{pmatrix} > 0 \]
Semi-Discretization for Time-Delay Systems
Stability and Engineering Applications
Insperger, T.; Stepan, G.
2011, X, 174 p., Hardcover
ISBN: 978-1-4614-0334-0