Dear Colleague,

Optical nanofibers and microresonators have become enormously useful in the last decade in areas ranging from atomic through optical to quantum physics. Novel applications include optical sensing, lasing, optical signal processing, atom/particle trapping, optomechanics, and nonlinear optics. New uses are constantly emerging due to the special properties that enable both sensing and controlling of the environment with evanescent fields.

This topical issue is dedicated to the theory, fabrication methods, and broad applications of optical nanofibers, microresonators, or more complex devices, for the areas mentioned above. Theoretical and experimental studies, as well as articles reporting new results in other topics related to optical nanofibers and microresonators are welcome:

- Theory and fabrication methods of optical micro- and nanofibers
- Theory and fabrication methods of optical microresonators
- Optical micro-nanofibre and microresonator sensors
- Optical micro-nanofibre and microresonator classical and quantum processors
- Nonlinear properties of optical micro-nanofibres and microresonators
- Trapping of atoms or particles with nanofibers and microresonators
- Nonlinear optics using micro-nanofibers and microresonators
- Technologies based on micro-nanofibers and microresonators

We cordially invite you to contribute to this topical issue, by submitting your manuscript containing new, high quality, and unpublished material before

**November 30, 2019**

Both reviews and original research articles will be published. All manuscripts will be subject to a standard review procedure with respect to their degree of novelty, relevance, and quality of presentation. Immediate and speedy reviewing is supported by online submission at [https://www.editorialmanager.com/aphb/](https://www.editorialmanager.com/aphb/).

Manuscripts will be published immediately within 2 weeks after acceptance.

Looking forward to receiving your contribution.

Sincerely,