Contents

1 Introduction ... 1
 1.1 Historical Background of HIV/AIDS 1
 1.2 Global Scenario of HIV Pandemic 2
 1.3 Disease Transmission ... 3
 1.4 Drug Therapy Used in HIV/AIDS Treatment 6
 1.5 Aims of the Book ... 9
 1.6 Organization of the Book ... 10
References ... 11

Part I Dynamics of Immune System Against HIV

2 Role of CTL in Restricting Virus .. 19
 2.1 Suppression of CTL Responses .. 19
 2.1.1 Equilibria ... 20
 2.1.2 Existence Condition .. 20
 2.1.3 Stability Analysis .. 21
 2.1.4 Numerical Simulation and Discussion 22
 2.2 Reduction of HIV Infection with Cure Rate 24
 2.2.1 Equilibria and Local Stability 24
 2.2.2 Boundedness and Permanence of the System 26
 2.2.3 Global Stability of the System 27
 2.2.4 Discussion .. 27
 2.3 Antiviral Drug Treatment along with IL-2 28
 2.3.1 Existence Condition and Stability Analysis 29
 2.3.2 Numerical Simulation with Discussion 30
 2.4 IL-2 based Immune Therapy on T Cell 32
 2.4.1 General Analysis of the Mathematical Model 33
 2.4.2 Discussion .. 35
 2.5 Saturation Effects for CTL-Mediated Control 35
 2.5.1 Theoretical Study of the System 35
 2.5.2 Existence Condition and Biological Interpretation 36
2.5.3 Stability Analysis ... 36
2.5.4 Numerical Simulation .. 38
2.5.5 Discussion .. 38
2.6 Impact for Antigenic Stimulation on T Cell Homeostasis 39
 2.6.1 Equilibrium Points and their Stability Analysis 40
 2.6.2 Numerical Illustration and Discussion 40
References .. 42

3 T Cell Proliferation ... 43
 3.1 CTL Activity through HIV Infection 43
 3.1.1 Formulation of HIV Model 43
 3.1.2 Equilibria and Local Stability 44
 3.1.3 Boundedness and Permanence of the System 46
 3.1.4 Global Stability of System 47
 3.1.5 Numerical Analysis and Discussion 47
 3.2 Effect of HAART on CTL-Mediated Immune Cells 49
 3.2.1 Equilibria ... 50
 3.2.2 Stability Analysis 50
 3.2.3 Numerical Solutions of the Model Equations 53
 3.3 CTL-Mediated Control of HIV Infection 53
 3.3.1 Theoretical Study of the System 54
 3.3.2 Numerical Simulation 56
References .. 58

4 Feedback Effect towards HIV Infection 59
 4.1 Immune Cell Response to Negative Feedback Effect in HIV 59
 4.1.1 Theoretical Analysis 60
 4.1.2 Stability of the System 61
 4.1.3 Numerical Analysis 62
 4.1.4 Discussion ... 64
 4.2 Negative Feedback Effect in HIV Progression 65
 4.2.1 Steady-State Analysis 66
 4.2.2 Numerical Analysis 67
References .. 69

Part II Control-Based Therapeutic Approach

5 Insight of Delay Dynamics .. 79
 5.1 Delay Effect during Long-Term HIV Infection 79
 5.1.1 Local Stability Analysis 81
 5.1.2 Sufficient Conditions for Delay-Induced Instability 82
 5.1.3 Stability, Instability, and Bifurcation Results 83
 5.1.4 Numerical Simulations: Results and Discussions 86
 5.1.5 Delay in Different Variants 89
5.2 Delay-Induced System in Presence of Cure Rate 91
 5.2.1 Analysis ... 91
 5.2.2 Numerical Simulation 94
5.3 Delay Effect during Early Stage of Infection 95
 5.3.1 General Mathematical Model 96
 5.3.2 Numerical Simulation 100
5.4 Effect of Delay in Presence of Positive Feedback Control............... 102
 5.4.1 Numerical Analysis of the Delayed System 106
5.5 Effect of Delay during Combination of Drug Therapy 107
 5.5.1 Stability Analysis of the Delay-Induced System 108
5.6 Delay-Induced System in Presence of Saturation Effect 113
References .. 117
6 Optimal Control Theory ... 119
 6.1 Optimal Control Theoretic Approach of the Implicit Model 119
 6.1.1 Numerical Simulation of the Implicit Model 122
 6.2 The Optimal Control Problem on Chemotherapy for (3.15) 125
 6.2.1 Existence Condition of an Optimal Control 126
 6.2.2 Characterization of an Optimal Control 126
 6.2.3 Numerical Solutions of the Model Equations 128
 6.3 The Optimal Control Problem for the System (4.1) 131
 6.3.1 Numerical Analysis 134
 6.4 The Optimal Control Problem of the System (4.5) 134
 6.4.1 Numerical Analysis 137
 6.5 Optimization of the System (3.22) 138
 6.5.1 Numerical Simulation 140
 6.6 The Optimal Control Problem (2.11) 140
 6.6.1 Discussion ... 144
 6.7 Optimal Control Strategy .. 144
 6.7.1 Numerical Experiment of Optimal Control Strategy 147
 6.8 The Optimal Control Problem in case of Recovery of Infected
 Cells in HIV Model ... 148
 6.8.1 Numerical Simulation and Discussion 151
References .. 152
7 Perfect Drug Adherence .. 155
 7.1 Drug Therapy with Perfect Adherence in Explicit Form 155
 7.1.1 Analysis of the Model 156
 7.1.2 Dynamics of the Drug 157
 7.1.3 Numerical Simulation of the Explicit Model 160
 7.2 Enfuviritide-IL-2 Administration for HIV-1 Treatment 162
 7.2.1 Combining T Cell Population with Virus and Drugs 162
 7.2.2 Analysis of the Model 163
 7.2.3 Dynamics of the Drug 164
 7.2.4 Numerical Simulation 166
7.3 Effect of Chemokine Analog through Perfect Adherence
 7.3.1 Analysis of the Model
 7.3.2 Drug Dynamics
 7.3.3 Cell Count in Extreme Cases
 7.3.4 Numerical Simulation

References

8 Mathematical Models in Stochastic Approach
 8.1 Impact for Antigenic Stimulation on T Cell Homeostasis
 8.1.1 Formulation of the Kolmogorov’s Forward Equation
 8.1.2 Finding the Time to Extinction of Infected Cells
 8.1.3 The Distribution of the Time to Extinction
 8.1.4 Diffusion Approximation
 8.1.5 Numerical Illustration
 8.1.6 Discussion
 8.2 Expected Time to Extinction of the Disease
 8.2.1 Stochastic Version of the Model
 8.2.2 The Stochastic Model Formulation
 8.2.3 Description of the Transition States
 8.2.4 Diffusion Approximation
 8.2.5 Expected Time to Extinction
 8.2.6 Numerical Simulation
 8.2.7 Discussion
 8.3 Insight of T Cell Proliferation in the Expected Time
 to Extinction
 8.3.1 The Deterministic Model
 8.3.2 The Stochastic Model Formulation
 8.3.3 Description of the Transition States
 8.3.4 Kolmogorov’s Forward Equation
 8.3.5 Time to Extinction of Infected T Cells
 8.3.6 The Distribution of the Time to Extinction
 8.3.7 Diffusion Approximation
 8.3.8 The Expected Time to Extinction
 8.3.9 Numerical Illustration
 8.3.10 Discussion and Conclusion

References
Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission
Roy, P.K.
2015, XIX, 213 p. 67 illus., 4 illus. in color., Hardcover