Contents

1 Introduction .. 1
1.1 Definition of Poisson’s Ratio 1
1.2 History of Poisson’s Ratio 2
1.3 Definition of Auxetic Materials 3
1.4 History of Negative Poisson’s Ratio 5
1.5 Naturally Occurring Auxetic Materials 6
1.6 Auxetic Foams .. 7
1.7 Auxetic Yarns and Textiles 32
1.8 Auxetic Liquid Crystalline Polymers 37
1.9 Other Topics ... 38
References ... 40

2 Micromechanical Models for Auxetic Materials 45
2.1 Introduction ... 45
2.2 Re-entrant Open-Cell Microstructure 45
2.3 Nodule Fibril Microstructure—Hinging, Flexure and Stretching Modes of Fibrils 48
2.4 Generalized 3D Tethered-Nodule Model 58
2.5 Rotating Squares and Rectangles Models 62
2.6 Rotating Triangles Models 72
2.7 Tetrahedral Framework Structure 76
2.8 Hard Cyclic Hexamers Model 79
2.9 Missing Rib Models 81
2.10 Chiral and Anti-chiral Lattice Models 88
2.11 Interlocking Hexagons Model 97
2.12 Egg Rack Structure 103
References ... 103

3 Elasticity of Auxetic Solids 107
3.1 Constitutive Relationships 107
3.2 Bounds in Poisson’s Ratio for Isotropic Solids 113
4 Stress Concentration, Fracture and Damage in Auxetic Materials

4.1 Introduction ... 147
4.2 Stress Concentration in Auxetic Solids with Cavities 148
4.3 Stress Concentration in Auxetic Solids with Rigid Inclusions ... 149
4.4 Stress Concentration in Auxetic Plates ... 151
4.5 Stress Concentration in Auxetic Rods ... 152
4.6 Fracture Characteristics of Auxetic Solids ... 156
4.7 Stress and Displacement Fields Around Notches in Auxetic Solids ... 158
4.8 Mode I Dimensionless Displacement Fields ... 161
4.9 Mode II Dimensionless Displacement Fields ... 162
4.10 Mode III Dimensionless Displacement Field ... 165
4.11 Damage in Auxetic Solids ... 166
4.12 Fatigue in Auxetic Materials ... 167
References .. 168

5 Contact and Indentation Mechanics of Auxetic Materials

5.1 Introduction ... 171
5.2 Line Contact on Auxetic Materials ... 171
5.3 Point Contact on Auxetic Materials ... 180
5.4 Effect of Indenter Shape on Auxetic Materials ... 185
5.5 Contact Between Auxetic Spheres ... 191
5.6 Contact Deformation in Auxetic Composites ... 195
5.7 Indentation of Auxetic Foams ... 197
References .. 199

6 Auxetic Beams

6.1 Stretching of Auxetic Bars ... 201
6.2 Cantilever Bending of Auxetic Beams with Circular Cross Sections ... 203
6.3 Cantilever Bending of Auxetic Beams with Rectangular Cross Sections ... 205
6.4 Cantilever Bending of Auxetic Beams with Narrow Rectangular Cross Sections 206
6.5 Cantilever Bending of Auxetic Beams with Wide Rectangular Cross Sections 206
6.6 Cantilever Bending of Auxetic Beams with Regular Rectangular Cross Sections 207
6.7 Uniformly Loaded Auxetic Beams with Narrow Rectangular Cross Sections 210
6.8 Torsion of Auxetic Rods 211
6.9 Remarks on Auxetic Rods with Circular Cross Sections 213
References .. 215

7 Auxetic Solids in Polar and Spherical Coordinates 217
7.1 Introduction 217
7.2 Thick-Walled Auxetic Cylinders 218
7.3 Rotating Thin Auxetic Disks 221
7.4 Rotating Thick Auxetic Disks 224
7.5 Thick-Walled Auxetic Spheres 226
References .. 230

8 Thin Auxetic Plates and Shells 231
8.1 Introduction 232
8.2 Flexural Rigidity of Auxetic Plates 232
8.3 Circular Auxetic Plates 241
8.4 Rectangular Auxetic Plates 259
8.5 Auxetic Plates on Auxetic Foundation 275
8.6 In-Plane Compression of Constrained Auxetic Plate 283
8.7 Spherical Auxetic Shells 285
References .. 291

9 Thermal Stresses in Auxetic Solids 293
9.1 Introduction 293
9.2 General Thermoelasticity of Auxetic Solids 294
9.3 Thermoelasticity of 3D Auxetics with Complete Geometrical Constraints 298
9.4 Thermoelasticity of Plates with Temperature Variation Along Thickness 298
9.5 Thermoelasticity of Beams with Temperature Variation Along the Beam Thickness 300
9.6 Dimensionless Thermal Stresses for Auxetic Plates and Shells 302
9.7 Thermal Stresses for Auxetic Plates and Shells 308
9.8 Summary on Thermal Stresses in Auxetic Plates and Shells . . . 316
9.9 Thermal Conductivity in Multi–re-entrant Honeycomb Structures. .. 318
References. .. 320

10 Elastic Stability of Auxetic Solids .. 321
10.1 Introduction .. 321
10.2 Buckling of Auxetic Columns ... 322
10.3 Buckling of Rectangular Auxetic Plates 324
10.4 Buckling of Circular Auxetic Plates 328
10.5 Buckling of Cylindrical Auxetic Shells 332
10.6 Buckling of Spherical Auxetic Shells 336
10.7 Recent Advances on Instability in Relation to Auxetic Materials and Structures... 338
References. .. 344

11 Vibration of Auxetic Solids .. 345
11.1 Introduction .. 345
11.2 Vibration of Circular Auxetic Plates 346
11.3 Vibration of Rectangular Auxetic Plates 350
11.4 Vibration of Cylindrical Auxetic Shells 358
11.5 Vibration of Spherical Auxetic Shells 361
11.6 Advanced Topics on Vibration and Acoustics of Auxetic Solids and Structures... 362
References. .. 364

12 Wave Propagation in Auxetic Solids 367
12.1 Introduction .. 367
12.2 Longitudinal Waves in Prismatic Auxetic Bars 369
12.3 Plane Waves of Dilatation in Auxetic Solids 370
12.4 Plane Waves of Distortion in Auxetic Solids 371
12.5 Rayleigh Waves in Auxetic Solids 373
12.6 Non-dimensionalization of Wave Velocities 374
12.7 Advanced Topics on Wave Motion in Auxetic Solids 380
References. .. 382

13 Wave Transmission and Reflection Involving Auxetic Solids 385
13.1 Introduction .. 385
13.2 Analysis .. 387
13.3 Longitudinal Wave (1D Stress State or 3D Strain State) 389
13.4 Longitudinal Wave (Width-Constrained Plates) 390
13.5 Plane Waves of Dilatation (1D Strain State or 3D Stress State) ... 390
Contents

13.6 Torsional Waves .. 391
13.7 Rayleigh Waves ... 392
13.8 Non-dimensionalization of Transmitted
and Reflected Stresses 392
13.9 Dimensionless Transmitted Stress in Longitudinal Waves
(1D Stress State) ... 394
13.10 Dimensionless Transmitted Stress in Longitudinal Waves
(Constrained-Width Plates) 395
13.11 Dimensionless Transmitted Stress in Plane Waves
of Dilatation .. 397
13.12 Dimensionless Transmitted Stress in Torsional Waves 399
13.13 Dimensionless Transmitted Stress in Rayleigh Waves 401
13.14 Summary on Stress Wave Transmission Involving
Auxetic Solids .. 403
References .. 404

14 Longitudinal Waves in Auxetic Solids 405
14.1 Introduction ... 405
14.2 Review of Elementary Analysis 407
14.3 Density Correction 408
14.4 Lateral Inertia ... 409
14.5 Density Correction and Lateral Inertia 411
14.6 Analogy with Plane Waves of Dilatation 416
14.7 Lateral Inertia in Auxetic Love Rods 419
14.8 Lateral Inertia and Density Correction in Auxetic
Love Rods .. 422
References .. 425

15 Shear Deformation in Auxetic Solids 427
15.1 Introduction ... 427
15.2 Laterally-Loaded Thick Auxetic Beams 428
15.3 Shear Correction Factors for Isotropic Plates
Within $-1 \leq \nu \leq 0.5$ 436
15.4 Laterally-Loaded Thick Circular Auxetic Plates 440
15.5 Laterally-Loaded Thick Polygonal Auxetic Plates 444
15.6 Laterally-Loaded Thick Rectangular Auxetic Plates ... 447
15.7 Buckling of Thick Auxetic Columns 453
15.8 Buckling of Thick Auxetic Plates 459
15.9 Vibration of Thick Auxetic Plates 467
References .. 472

16 Simple Semi-auxetic Solids 475
16.1 Introduction ... 475
16.2 Elastic Properties of a Directional Semi-auxetic Solid 476
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Kinematical Studies on Rotation-Based Semi-auxetics</td>
<td>482</td>
</tr>
<tr>
<td>16.4 Analysis of Semi-auxetic Yarns</td>
<td>489</td>
</tr>
<tr>
<td>16.5 Processing of Semi-auxetic Yarns</td>
<td>498</td>
</tr>
<tr>
<td>16.6 Functionally-Graded Semi-auxetic Beams</td>
<td>503</td>
</tr>
<tr>
<td>16.7 Semi-auxetic Rods</td>
<td>508</td>
</tr>
<tr>
<td>16.8 Semi-auxetic Sandwich Plates</td>
<td>515</td>
</tr>
<tr>
<td>16.9 Mixed Auxeticity of Semi-auxetic Sandwich Structures</td>
<td>521</td>
</tr>
<tr>
<td>References</td>
<td>531</td>
</tr>
<tr>
<td>17 Semi-auxetic Laminates and Auxetic Composites</td>
<td>533</td>
</tr>
<tr>
<td>17.1 Introduction</td>
<td>533</td>
</tr>
<tr>
<td>17.2 Semi-auxetic Unidirectional Fiber Composites</td>
<td>534</td>
</tr>
<tr>
<td>17.3 Out-of-Plane Modulus of Semi-auxetic Laminates</td>
<td>536</td>
</tr>
<tr>
<td>17.4 In-plane Modulus of Semi-auxetic Laminates</td>
<td>544</td>
</tr>
<tr>
<td>17.5 Further Counter-Intuitive Modulus from Semi-auxetic Laminates</td>
<td>550</td>
</tr>
<tr>
<td>17.6 Comparison Between In-Plane and Out-of-Plane</td>
<td>557</td>
</tr>
<tr>
<td>Modulus of Semi-auxetic Laminates</td>
<td></td>
</tr>
<tr>
<td>17.7 Semi-auxetic and Alternating Positive and Negative</td>
<td>558</td>
</tr>
<tr>
<td>Thermal Expansion Laminates</td>
<td></td>
</tr>
<tr>
<td>17.8 Auxetic Composites</td>
<td>569</td>
</tr>
<tr>
<td>References</td>
<td>579</td>
</tr>
<tr>
<td>Index</td>
<td>581</td>
</tr>
</tbody>
</table>
Auxetic Materials and Structures
Lim, T.-C.
2015, XV, 587 p. 375 illus., 60 illus. in color., Hardcover