Contents

Preface vii
Acknowledgments ix
Prolegomena xi
 Layout and Summary xi
 Suggestions for courses xiii
Notation xv
List of contributors xvii
Contents xix

1 Overview of Topological Ideas in Condensed Matter Physics 1
 By Siddhartha Sen

1.1 Introduction 1
1.2 Manifolds 5
1.3 Differential Forms 7
 1.3.1 Examples 9
1.4 Vector fields 9
1.5 The exterior derivative (d) 11
1.6 A brief discussion on de Rham cohomology 12
1.7 Betti numbers 13
1.8 Homotopy and Cohomology Groups 14
1.9 Fibre Bundles and Vector Bundles 18
1.10 Groups and their manifolds 20
 1.10.1 U(1) 20
 1.10.2 SU(2) 21
 1.10.3 SO(3) 21
1.11 Conclusion 21
I Topological Tools

2 Set Topology 25
 By Somnath Basu and Atreyee Bhattacharya
 I Topology: A Quick Review 25
 2.1 Equivalence relation 25
 2.2 From metric spaces to topology 26
 2.3 Topological spaces: Definition and examples 28
 2.4 Topological spaces: Some key properties 30
 2.5 Quotient topology 32
 2.6 Topological manifolds 35
 II A Tutorial on Equivalence Relations and Quotient Sets 38

3 Homotopy theory 45
 By Samik Basu and Soma Maity
 I The Fundamental Group 45
 3.1 Introduction 45
 3.2 Paths and loops in a topological space 46
 3.3 Operations on paths and loops 48
 3.4 The fundamental group 51
 II Higher Homotopy Groups 57
 3.5 Definition of homotopy groups 57
 3.6 Computing homotopy groups 59
 III A Tutorial on Fundamental groups and group actions 61
 3.7 Fundamental groups of Spheres 61
 3.8 Fundamental group of Real Projective spaces 62
 3.9 Group actions 62

4 Homology 65
 By Dheeraj Kulkarni
 4.1 Introduction 65
 4.2 Motivating Examples 66
 4.3 Simplicial Complex 66
 4.4 Review of Abelian Groups 69
 4.5 Chain Groups, Boundary Maps and Homology Groups 69
 4.6 Computation of Homology Groups Of Surfaces 71
 4.6.1 The Cylinder 71
 4.6.2 Torus 74
 4.6.3 The Projective Plane 75
 4.7 Some Remarks and Conclusion 76
5 Differential Topology and Differential Geometry

By Kingshook Biswas and Soma Maity

I A Brief Introduction to Manifolds and Differential Forms

5.1 Introduction: Smooth Manifolds, Tangent Spaces, Derivatives

- 5.1.1 Examples of manifolds
- 5.1.2 Manifolds as configuration spaces of mechanical systems
- 5.1.3 Tangent spaces and derivatives
- 5.1.4 Tangent bundle, vector fields and flows

5.2 Differential forms, wedge products and exterior derivative

- 5.2.1 Multilinear forms, alternating forms, tensor products, wedge products
- 5.2.2 Differential forms on manifolds
- 5.2.3 Integration of differential forms
- 5.2.4 Boundary of a chain
- 5.2.5 Exterior derivative of differential forms
- 5.2.6 Stokes’ Theorem

5.3 de Rham cohomology of smooth manifolds

- 5.3.1 Poincaré Lemma
- 5.3.2 de Rham’s Theorem

II An Introduction to Riemannian Geometry

5.4 A Non-Euclidean Geometry

- 5.4.1 Hyperbolic Geometry

5.5 Riemannian Geometry

- 5.5.1 Riemannian curvature

6 Vector Bundles

By Utsav Choudhury and Atreyee Bhattacharya

I Vector Bundles and K-theory

6.1 Introduction

6.2 Basic definitions and examples

- 6.2.1 Examples
- 6.2.2 Map of vector bundles
- 6.2.3 Sections of a vector bundle
- 6.2.4 Examples

6.3 Operations

- 6.3.1 Direct Sum
- 6.3.2 Inner Product
- 6.3.3 Tensor Product
- 6.3.4 Dual
- 6.3.5 Pullback

6.4 Clutching function

6.5 Complex K-theory and Bott periodicity

- 6.5.1 The abelian group structure
- 6.5.2 The ring structure and external product
- 6.5.3 Non zero vector field on S^2
II An introduction to the Chern-Weil Theory in vector bundles 125
 6.6 Introduction . 125
 6.7 Connection and curvature in a vector bundle 125
 6.7.1 Connection in a smooth manifold and curvature 125
 6.7.2 Connections in a vector bundle 128
 6.7.3 Curvature in a vector bundle 130
 6.7.4 Behaviour of the connection and curvature forms under change of (local) trivializations 132
 6.7.5 Connections and curvature in a complex vector bundle . . 134
 6.8 Characteristic classes . 135
 6.8.1 Invariant polynomials 136
 6.8.2 Chern classes and Pontrjagin classes 138
 6.8.3 Examples . 140

7 Special Topics: A Crash Course on Knots 143
 By Mahan Mj
 7.1 Introduction: Equivalence between Knots 143
 7.2 Knot Invariants . 144
 7.3 The Knot Group . 144
 7.3.1 Wirtinger presentation 145
 7.3.2 The first homology . 146
 7.4 Torsion . 146
 7.5 Seifert surfaces . 147
 7.6 Alexander Polynomial . 147
 7.7 Skein Relations . 148
 7.7.1 Alexander polynomial 148
 7.7.2 Jones polynomial . 148
 7.8 Linking Number . 149

8 Special Topics: A Short Course on Group Theory 153
 By Bobby Ezhuthachan
 8.1 Groups and Physics . 153
 8.2 Basic definition . 154
 8.3 Abelian Groups . 155
 8.4 Nonabelian cases: Conjugacy class, cosets 158
 8.5 Commutator subgroup and abelianization 159
 8.6 Examples of Groups . 159
 8.6.1 The Quaternionic Group 159
 8.6.2 Rotations of a rigid body 160
 8.7 $SU(2)$ and $SO(3)$. 162
 8.7.1 $SU(2)$ matrices . 163
 8.8 Conformal transformations . 165
II Physics problems

9 Use of Topology in physical problems

By Somendra M. Bhattacharjee

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>The Not-so-simple Pendulum</td>
<td>171</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Mechanics</td>
<td>172</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Topological analysis: Teaser</td>
<td>173</td>
</tr>
<tr>
<td>9.2</td>
<td>Topological analysis: details</td>
<td>176</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Configuration Space</td>
<td>177</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Phase space</td>
<td>178</td>
</tr>
<tr>
<td>9.3</td>
<td>Topological spaces</td>
<td>182</td>
</tr>
<tr>
<td>9.4</td>
<td>More examples of topological spaces</td>
<td>184</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Magnets</td>
<td>184</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Liquid crystals</td>
<td>186</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Crystals</td>
<td>188</td>
</tr>
<tr>
<td>9.4.4</td>
<td>A few Spaces in Quantum mechanics</td>
<td>188</td>
</tr>
<tr>
<td>9.5</td>
<td>Disconnected space: Domain walls</td>
<td>190</td>
</tr>
<tr>
<td>9.6</td>
<td>Continuous functions</td>
<td>192</td>
</tr>
<tr>
<td>9.7</td>
<td>Quantum mechanics</td>
<td>193</td>
</tr>
<tr>
<td>9.7.1</td>
<td>QM on multiply-connected spaces</td>
<td>193</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Particle on a ring</td>
<td>194</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Topological/Geometrical phase</td>
<td>197</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Generalization – Connection, curvature</td>
<td>200</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Chern, Gauss-Bonnet</td>
<td>201</td>
</tr>
<tr>
<td>9.7.6</td>
<td>Classical context: geometric phase</td>
<td>202</td>
</tr>
<tr>
<td>9.7.7</td>
<td>Examples: Spin-1/2, Quantum two level system, Chern insulators</td>
<td>203</td>
</tr>
<tr>
<td>9.8</td>
<td>DNA</td>
<td>208</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Linking number</td>
<td>209</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Twist and Writhe</td>
<td>210</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Problem of Topoisomerase</td>
<td>211</td>
</tr>
<tr>
<td>9.9</td>
<td>Summary</td>
<td>212</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Möbius strip and Stokes theorem</td>
<td>213</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Disentanglement via moves in 4-dimensions</td>
<td>214</td>
</tr>
</tbody>
</table>

10 What is dimension?

By Somendra M. Bhattacharjee

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>10.2</td>
<td>Does “dimension” matter?</td>
<td>218</td>
</tr>
<tr>
<td>10.3</td>
<td>Euclidean and topological dimensions</td>
<td>219</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Euclidean dimension</td>
<td>219</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Topological dimension</td>
<td>221</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10.4 Fractal dimension: Hausdorff, Minkowski (box) dimensions</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>10.4.1 Cantor set: $d_t = 0, d_f < 1$</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>10.4.2 Koch curve: $d_t = 1, d_f > 1$</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>10.4.3 Sierpinski Gasket: $d_t = 1, d_f > 1$</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>10.4.4 Paths in Quantum mechanics: $d_t = 1, d_f = 2$</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>10.5 Dimensions related to physical problems</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>10.5.1 Spectral dimension</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>10.6 Which d?</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>10.6.1 Thermodynamic equation of state</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>10.6.2 Phase transitions</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>10.6.3 Bound states in quantum mechanics</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>10.7 Beyond geometry: engineering and anomalous dimensions</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>10.7.1 Engineering dimension</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>10.7.2 Anomalous dimension</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>10.7.3 Renormalization group flow equations</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>10.7.4 Example: localization by disorder - scaling of conductance</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>10.8 Multifractality</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>10.9 Conclusion</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Entropy and fractal dimension</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Complex dimension: continuous and discrete Scaling</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>B.1 Cantor string</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>Appendix C: Spectral dimension for the Sierpinski Gasket</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>11 Quantum Geometry and Topology</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>By R. Shankar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>11.2 The space of physical states</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>11.2.1 Rays in Hilbert space</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>11.2.2 Two level systems</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>11.2.3 N-level systems</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>11.3 Quantum Geometry</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>11.3.1 The inner product and Bargmann invariants</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>11.3.2 Distance and Geometric Phase</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>11.3.3 The quantum geometric tensor</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>11.3.4 Examples</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>11.4 Periodic systems</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>11.4.1 Tight-binding models</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>11.4.2 Spectral bands</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>11.4.3 Examples</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>11.4.4 Quantum geometry of the spectral bands</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>11.4.5 Dirac points and topological transitions</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>11.5 Physical manifestation</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>11.5.1 Dynamics constrained to a Band</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>11.6 Summary</td>
<td>278</td>
<td></td>
</tr>
</tbody>
</table>
Contents

12 Topology, geometry and quantum interference in condensed matter physics
 By Alexander Abanov

12.1 Introductory remarks
 12.1.1 Theory of Everything in condensed matter physics
 12.1.2 Spontaneous symmetry breaking and an emergent topology
 12.1.3 Additional reading

12.2 Motivating example: a particle on a ring
 12.2.1 Classical particle on a ring: Action, Lagrangian, and Hamiltonian
 12.2.2 Quantum particle on a ring: Hamiltonian and spectrum
 12.2.3 Quantum particle on a ring: path integral and Wick’s rotation
 12.2.4 Quantum doublet
 12.2.5 Full derivative term and topology
 12.2.6 Topological terms and quantum interference
 12.2.7 General definition of topological terms
 12.2.8 Theta terms and their effects on the quantum problem
 12.2.9 Exercises

12.3 Path integral for a single spin
 12.3.1 Quantum spin
 12.3.2 Fermionic model
 12.3.3 Derivation of a WZ term from fermionic model without chiral rotation
 12.3.4 Quantum spin as a particle moving in the field of Dirac monopole
 12.3.5 Reduction of a WZ term to a theta-term
 12.3.6 Properties of WZ terms
 12.3.7 Exercises

12.4 Spin chains
 12.4.1 Path integral for quantum magnets
 12.4.2 Continuum path integral for Quantum Antiferromagnet
 12.4.3 RG for $O(3)$ NLSM
 12.4.4 $O(3)$ NLSM with topological term
 12.4.5 Boundary states for spin 1 chains with Haldane’s gap
 12.4.6 AKLT model
 12.4.7 Exercises

12.5 Conclusion

12.6 Acknowledgements

Appendix A: Topological defects and textures
Appendix B: Integrating out 1 field
Appendix C: Homotopy groups often used in physics
13 Dirac quasiparticles and Majorana modes in condensed matter systems 333
 By K. Sengupta
 13.1 Introduction ... 333
 13.2 Dirac Fermions in Graphene and Topological Insulators 334
 13.2.1 Graphene band structure 334
 13.2.2 Topological Insulators 336
 13.2.3 Properties of Dirac quasiparticles 338
 13.3 Majorana modes in unconventional superconductors 340

14 Vertex Models and Knot invariants 343
 By P. Ramadevi
 14.1 Introduction ... 343
 14.2 Salient Features of Knots 344
 14.3 Knots from braids 346
 14.4 Vertex model .. 348
 14.5 Ice Type model .. 348
 14.5.1 Six vertex model 350
 14.5.2 Knot Polynomials 353
 14.5.3 Nineteen vertex model (Spin-1 particles) 355
 14.6 Summary and Discussions 356

15 Concepts of polymer statistical topology 359
 By Sergei Nechaev
 15.1 What are we talking about? 359
 15.2 Milestones .. 363
 15.2.1 Abelian epoch 363
 15.2.2 Non-Abelian epoch 365
 15.2.3 Crumpled globule: Topological correlations in collapsed unknotted rings 383
 15.3 Conclusion .. 390
 15.3.1 The King is dead, long live The King! 390
 15.3.2 Where to go 392

16 Introduction to abelian and non-abelian anyons 399
 By Sumathi Rao
 16.1 Introduction ... 399
 16.2 Abelian anyons ... 401
 16.2.1 Basic concepts of anyon physics 401
 16.2.2 Anyons obey braid group statistics 405
 16.2.3 Spin of an anyon 409
 16.2.4 Physical model of an anyon 409
 16.2.5 Two anyon quantum mechanics 410
 16.2.6 Many anyon systems 413
 16.3 Toric code model as an example of abelian anyons 414
 16.3.1 Toric code on a square lattice 415
18.2.4 Braiding evolutions 481
18.2.5 Anyons in many-body systems: Ground state degeneracy and Berry phases 483
18.3 Quantum computation with anyons 485
 18.3.1 The topological qubit and initialisation 485
 18.3.2 Topological gates and measurements 486
18.4 Ising anyons as Majorana modes in a microscopic model 488
 18.4.1 Kitaev’s toy model for a topological nanowire 488
 18.4.2 The Majorana qubit 491
 18.4.3 Manipulating the Majorana qubit 492
 18.4.4 How protected is the Majorana qubit? 493
18.5 Outlook .. 495

Index .. 501
Topology and Condensed Matter Physics
Bhattacharjee, S.M.; Mj, M.; Bandyopadhyay, A. (Eds.)
2017, XXVIII, 507 p. 148 illus., 80 illus. in color.,
Hardcover