Contents

Part I Magnetoelastic Waves in Electroconductive Nonferromagnetic Media

1 Basics of the Theory of Magnetoelasticity .. 3
 1.1 Main Equations and Relations of Magnetoelasticity of Electroconductive Non-ferromagnetic Bodies ... 3
 1.1.1 Equations and Relations of Electrodynamics in Euler Variables 3
 1.1.2 Equations and Relationships of the Theory of Elasticity in Account of Forces of Electromagnetic Origin in Euler Variables 7
 1.1.3 Equations of Electrodynamics for Vacuum ... 9
 1.1.4 Boundary and Initial Conditions. Conditions at Infinity ... 9
 1.1.5 Equations and Relations of the Theory of Magnetoelasticity of Conducting Media in the Lagrange Variables ... 11
 References. .. 15

2 Some General Issues of Propagation of Magnetoelastic Waves in Electroconductive Isotropic and Anisotropic Media 17
 2.1 Basics of the Linear Theory of Magnetoelasticity of Electroconductive Media ... 17
 2.2 Equations of Magnetoelastic Waves in Displacements.
 One-Dimensional Quasi-longitudinal and Quasi-transversal Magnetoelastic Waves ... 22
 2.2.1 The Equations of Magnetoelastic Waves in Displacements ... 22
 2.2.2 One-Dimensional Quasi-longitudinal and Quasi-transverse Waves ... 24

xiii
2.3 Propagation Character of Two-Dimensional Magnetoelastic Waves
2.3.1 Equations of Two-Dimensional Magnetoelastic Waves
2.3.2 The Condition of Complete Hyperbolicity. The Area of Values of the Coefficients of the Equations of Magnetoelastic Waves
2.4 Investigation of the Roots of Characteristic Equation of Two-Dimensional Magnetoelastic Waves and Drawing of the Acceptable Area on the Basis of the Roots
2.4.1 Characteristic Equation of Two-Dimensional Magnetoelastic Waves
2.4.2 Investigation of the Roots of the Characteristic Equation
2.5 Classification of Plane Magnetoelastic Waves. Behavior of Their Velocities
2.5.1 Classification of Plane Magnetoelastic Waves. Fast and Slow Magnetoelastic Waves
2.5.2 Behavior of the Phase Velocity of Plane Magnetoelastic Waves
2.5.3 The Case of an Isotropic Medium
References

3 Magnetoelastic Waves in Electroconductive Half-Space
3.1 Reflection of Magnetoelastic Waves from the Boundary of a Conductive Half-Space
3.1.1 The Problem Statement
3.1.2 Solution of the Problem
3.2 Magnetoelastic Vibrations in an Anisotropic Perfectly Conductive Half-Space Under Normal Pressure
3.2.1 The Problem Statement and Solution of Inhomogeneous Boundary Problem
3.2.2 The Case of an Orthotropic Half-Space
3.3 Magnetoelastic Rayleigh Waves with Consideration of the Initial Stresses Caused by Magnetic Pressure of a Longitudinal Magnetic Field
3.3.1 The Problem Statement
3.3.2 Solution of the Addressed Problem. Investigation of Characteristic Equation
3.3.3 Character of Wave Propagation
3.4 Influence of Magnetic Pressure of Transversal Magnetic Field on the Propagation Character of Rayleigh Waves
3.4.1 The Problem Statement
3.4.2 Solution of the Problem. Investigation of Characteristic Equation
3.4.3 Character of Wave Propagation .. 98
3.5 Surface Magnetoelastic Rayleigh Waves in Absence of Magnetic Pressure ... 100
3.5.1 The Problem Statement ... 101
3.5.2 Solution of the Problem .. 102
3.6 Solution of the Two-Dimensional Magnetoelastic Lamb Problem ... 106
3.6.1 The Problem Statement ... 106
3.6.2 Solution of the Problem ... 108
References .. 115

Part II Magnetoelastic Waves in Magnetoactive Nonconductive Media

4 Magnetoelastic Waves in Magnetically Active Non-conductive Media ... 119
4.1 Main Equations, Boundary Conditions and Relations of Magnetoelasticity of Magnetoactive Dielectric Media and Their Linearization ... 119
4.1.1 Non-linear Equations and Relations of Magnetoelasticity .. 119
4.1.2 Linearization of Basic Equations, Relations and Boundary Conditions of Magnetoelastic Waves in Magnetoactive Non-conductive Media .. 126
4.2 Two-Dimensional Equations and Relations of the Linear Theory of Magnetoelasticity of Magnetostrictive and Piezomagnetic Media ... 134
4.2.1 Propagation of Magnetostrictively Coupled Quasilongitudinal and Quasitransverse Plane Waves 141
4.3 Reflection of Magnetoelastic Shear Waves from the Boundary of Magnetostrictive Half-Space 144
4.3.1 The Statement of Reflection Problem 144
4.3.2 Generation of ASMO Caused by the Magnetostrictive Effect .. 146
4.4 Tunneling of Magnetoelastic Shear Waves in Magnetostrictive Media .. 150
4.4.1 Possibility of Contactless Transmission of Magnetoelastic Wave from One Medium to Another 151
4.5 Reflection and Tunneling of Magnetoelastic Shear Waves in Piezomagnetic Media 154
4.5.1 The Reflection Problem. The Possibility of Amplification of the Magnetic Field Near the Boundary 155
4.5.2 The Tunneling Problem. Possibility of Complete Percolation .. 160
4.6 Surface Magnetoelastic Love Waves in Magnetostrictive Media .. 164
 4.6.1 The Problem Statement. The Basic Equations and Boundary Conditions 164
 4.6.2 Love Waves in the Case of a Dielectric Layer 166
 4.6.3 Love Waves in the Case of an Ideally Conducting Layer .. 168

4.7 Gap Waves in Magnetostrictive Media ... 170
 4.7.1 The Statement and Solution of the Problem. Symmetric and Anti-symmetric Waves 170
 4.7.2 Generation of Gap Waves Localization at the Surfaces of Media 174

4.8 Gap Waves in Piezomagnetic Media 176
 4.8.1 The Statement and Solution of the Problem. Symmetric and Anti-symmetric Waves 176
 4.8.2 Determination of the Main Characteristics of Gap Waves 179

4.9 Existence and Propagation Character of Two-Dimensional Surface Waves in a Magnetostrictive Half-Space 183
 4.9.1 Linearized Equations and Boundary Conditions for the Perturbed State of Magnetostrictive Media 183
 4.9.2 The Equations and the Boundary Conditions for Plane Magnetoelastic Waves 186
 4.9.3 Magnetoelastic Rayleigh Waves in a Magnetostrictive Half-Space 188
 4.9.4 Shear Surface Magnetoelastic Waves 191

4.10 Generation of Surface Shear Waves in a Half-Space by the Rayleigh Wave 193
 4.10.1 The Statement of the Problem of Magnetoelastic Waves Propagation in a Magnetically Soft Ferromagnetic Medium .. 194
 4.10.2 Equations and Boundary Conditions for Two-Dimensional Surface Magnetoelastic Waves 196
 4.10.3 Solution of the Problem of Propagation of a Magnetoelastic Rayleigh Wave 198
 4.10.4 Rayleigh Wave as a Source of Generation of a Shear Surface Wave 199

References .. 199

5 Propagation of Spin and Elastic-Spin Waves in Ferromagnetic Medium ... 203
 5.1 Existence and Propagation Character of Spatial Spin Surface Waves .. 203
 5.1.1 Problem of Propagation of Spin (Magnetic) Waves in Ferromagnetics 205
5.1.2 Dispersion Equation of Spatial Spin Surface Waves 209
5.1.3 Solution of Dispersion Equation. Condition of Existence and Character of Propagation of Surface Waves ... 212
5.2 Surface Spin Waves in Laminated Ferromagnetic Media 216
5.2.1 Propagation of Surface Spin Waves in a Piecewise Homogeneous Ferromagnetic Medium Consisting of Two Half-Spaces 221
5.2.2 Propagation of Surface Spin Waves in a Piecewise Homogeneous Space, When the Ferromagnetic Layer Lies Between Two Ferromagnetic Half-Spaces \((n = 3)\) 222
5.2.3 Propagation of Spin Waves in Piecewise Homogeneous Ferromagnetic Media with Screened Surfaces 227
5.3 Reflection of Magnetoelastic (Elastic-Spin) Waves from the Boundary of Ferromagnetic Elastic Half-Space 230
5.3.1 The Problem Statement 231
5.3.2 The Problem Solution. Plane Magnetoelastic Waves 233
5.3.3 Reflected Magnetoelastic Waves. Emergence of Accompanying Surface Magnetoelastic Vibrations 235
5.4 Elastic-Spin Surface Shear Wave in a Ferromagnetic Half-Space ... 238
5.5 Propagation of Surface Interrelated Elastic and Spin Waves in a Piecewise Homogeneous Ferromagnetic Half-Space 245
5.5.1 The Case of a Magnetoelastic Medium Composed of Two Ferromagnetic Half-Spaces 245
5.5.2 Magnetic and Magnetoelastic Homogeneous and Inhomogeneous Waves 247
5.5.3 The Problem Solution 249
References .. 250
Magneetoelastic Waves
Baghdasaryan, G.; Danoyan, Z.
2018, XVII, 251 p. 31 illus., Hardcover
ISBN: 978-981-10-6761-7