Contents

1 Introduction ... 1
 1.1 Reservoirs Are Typical “Mercury Sensitive Ecosystems” 1
 1.2 Characteristics of Reservoir Systems 2
 1.3 Why Study Reservoirs in Wujiang River Basin? 3
 1.3.1 Wujiang River Basin Is a Typical Impounded River System with Cascade Reservoirs Built in China 3
 1.3.2 Wujiang River Basin Can Be a Model of Yangtze River Catchment and Rivers of Southwestern China 3
 1.3.3 Reservoirs with Different Ages in Wujiang River Provide the Possibility to Investigate Mercury Biogeochemical Cycling Characteristics with the Evolution of Reservoirs 5
 1.3.4 The Scientific and Special Significance of Studying the Biogeochemical Cycling of Mercury in Reservoirs in Wujiang River Basin 5

References ... 6

2 Analysis of Mercury Species in the Environmental Samples ... 9
 2.1 Mercury Speciation in Water 9
 2.1.1 Definition of Mercury Species 9
 2.1.2 Sample Collection Program in River and Reservoirs ... 12
 2.1.3 Analysis Total Mercury in Water Samples 14
 2.1.4 Analysis of Methylmercury in Water Samples 14
 2.2 Analysis of Mercury Species in Sediment Samples 15
 2.2.1 Sample Collection .. 15
 2.2.2 Total Mercury Analysis in Sediment Samples 15
 2.2.3 Methylmercury Analysis in Sediment Samples 15
 2.3 Analysis of Mercury Species in Plankton and Fish 16
 2.3.1 Sample Collection .. 16
3 Wet Deposition Flux of Total Mercury and Methylmercury in Wujiang River Basin

3.1 Sampling Location and Sample Collection
3.1.1 Sampling Location
3.1.2 Collection, Processing, and Analysis of Mercury in Precipitation
3.1.3 Estimation of Wet Deposition Fluxes of Total Mercury and Methylmercury

3.2 Concentrations of Total Mercury and Methylmercury in Precipitation

3.3 Wet Deposition Fluxes of Total Mercury and Methylmercury

3.4 Comparison with Observations in China and in Other Regions Worldwide

3.5 Estimates of Wet Deposition of Mercury in Wujiang River

References

4 Water/Air Mercury Flux in Reservoirs

4.1 Sampling Sites and Sampling Techniques
4.1.1 Studied Reservoirs and Sampling Sites
4.1.2 Measurements of Water/Air Exchange Flux of Mercury
4.1.3 Meteorological and Water Quality Parameters

4.2 Atmospheric Total Gaseous Mercury Concentrations Over Water of Reservoirs

4.3 Overall Characteristics of Water/Air Mercury Flux

4.4 Diurnal and Seasonal Patterns of Water/Air Mercury Flux

4.5 Factors Influencing Water/Air Mercury Flux

4.6 Estimates of Hg Emission for Water in Wujiang River

References

5 Mercury in Inflow/Outflow Rivers of Reservoirs

5.1 Sampling Sites Description, Sample Collection, Sample Analyses, Analytical Methods, and QA/QC

5.2 General Water Quality Characteristics

5.3 Spatial and Temporal Variations of Mercury Species in River Water
5.3.1 Total Mercury
5.3.2 Particulate Mercury
5.3.3 Dissolved Mercury
8 Mercury Mass Balance in Reservoirs with Different Ages 303
8.1 Description of the Mass Balance Budget Calculations 303
8.2 Water Balance in Reservoirs 305
8.2.1 Water Input from Wet Deposition 305
8.2.2 Water Input from the Inflow River 308
8.2.3 Water Input from the Surface Runoff 310
8.2.4 Water Output from Reservoirs 310
8.2.5 Input–Output Water Budgets in Reservoirs 310
8.3 Input–Output Budgets for the Total Mercury and Methylmercury in Reservoirs 311
8.3.1 Total Mercury and Methylmercury Inputs from Precipitation 311
8.3.2 Total Mercury, Methylmercury, and Total Suspended Solid Inputs from the Inflow Rivers 313
8.3.3 Total Mercury and Methylmercury Inputs from Surface Runoff 317
8.3.4 Total Mercury and Methylmercury Outputs from Reservoir Discharge 318
8.3.5 Total Mercury and Methylmercury Outputs from Other Pathways 320
8.3.6 Elemental Mercury Emission Over the Water–Air Surface 321
8.4 The Relative Contribution of Different Vectors to the Mercury Input–Output Budgets 328
8.4.1 The Relative Contribution of Different Vectors to the Mercury Input in Reservoirs 328
8.4.2 The Relative Contribution of Different Vectors to the Mercury Output from Reservoirs 332
8.5 Net Fluxes and Stocking Rates of Mercury Species in Reservoirs 333
8.5.1 Net Fluxes of Mercury Species in Reservoirs 333
8.5.2 Storage Rates for Mercury Species in Reservoirs 334
8.5.3 Possible Factors Controlling the Net Fluxes and Storage Rates of Mercury Species in Reservoirs 335
References 337
9 Bioaccumulation of Mercury in Aquatic Food Chains 339
9.1 Aquatic Food Chains in Reservoirs 339
9.1.1 Phytoplankton 340
9.1.2 Zooplankton 344
9.1.3 Fish 348
9.2 Bioaccumulation and Transportation of Mercury in Food Chains 350
9.2.1 Mercury Species in Plankton 351
9.2.2 Mercury Species in Fish 366
9.3 Health Risk Assessment for Mercury Exposure 382
 9.3.1 Toxicity and Metabolism of Mercury Species 383
 9.3.2 Criteria of Risk Assessment of Mercury Exposure via
 Fish Consumption .. 384
 9.3.3 Study State of Risk Assessment of Mercury Exposure ... 385
 9.3.4 Health Risk Assessment of Methylmercury Exposure via
 Fish Consumption .. 385
References ... 386

10 Primary Factors Controlling Hg Methylation in Reservoirs 391
 10.1 Age of the Reservoir 391
 10.1.1 Introduction to the Evolutionary Stage of Reservoirs ... 391
 10.1.2 Impact of Evolutionary Stage of Reservoir on the
 Distribution of Mercury 392
 10.2 Eutrophication ... 397
 10.2.1 Evaluation of Reservoir Eutrophication in the Wujiang
 River Basin ... 398
 10.2.2 Effects of Eutrophication on the Mercury Distribution in
 Reservoirs ... 406
 10.3 Biogeochemical Model of Mercury in Reservoir 410
 10.3.1 Primary Evolutionary Stage of Reservoirs 410
 10.3.2 Intermediate Evolutionary Stage of Reservoirs 412
 10.3.3 Advanced Evolutionary Stage of Reservoirs 413
References ... 414
Biogeochemical Cycle of Mercury in Reservoir Systems in Wujiang River Basin, Southwest China
Feng, X.; Meng, B.; Yan, H.; Fu, X.; Yao, H.; Shang, L.