Contents

1 Introduction ... 1
 1.1 Basic Introduction of Graphene 1
 1.1.1 Overview of the Development History of Graphene 1
 1.1.2 Structure and Properties of Graphene 3
 1.1.3 Main Preparation Methods of Graphene 6
 1.1.4 Applications of Graphene 8
 1.2 Processing of Graphene ... 10
 1.2.1 Joining of Graphene 10
 1.2.2 Fabrication of Graphene Nanopore 11
 1.2.3 Doping of Graphene 11
 1.3 Particle Beam Processing and Its Application in Graphene Structure 13
 1.3.1 Introduction of Particle Beam Processing 13
 1.3.2 Research Status of Particle Beam Processing Graphene . 14
 1.4 Problem Introduction 16
 1.5 Research Content 18
References .. 19

2 Experiment Approaches and Simulation Methods 23
 2.1 Synthesis and Characterization of Graphene Specimen 23
 2.1.1 Preparation of Monolayer and Multilayer Graphene Specimens ... 23
 2.1.2 The Main Characterization Methods of Graphene Sample ... 26
 2.1.3 The Main Experimental Equipment for Graphene Processing ... 28
 2.2 Introduction of MD Simulation 29
 2.2.1 Concepts ... 29
 2.2.2 Basic Principles of Classic MD 29
 2.2.3 Atomic Interaction Force 30
 2.2.4 Integral Algorithm 34
2.2.5 Simulation Ensemble 35
2.2.6 Averaging of Statistical Results 36
2.2.7 Introduction of Simulation Software 38
2.3 Electronic Transport Theory 38
 2.3.1 Introduction 38
 2.3.2 DFT .. 38
 2.3.3 Green Function Theory 43
 2.3.4 Solution Process of the Electronic Transport
 Properties of Graphene 47
 2.3.5 Introduction to Simulation Software 48
2.4 Chapter Summary 48
References .. 50

3 General Mechanisms During the Interaction Between Particle
Beam and Graphene 51
 3.1 Introduction .. 51
 3.2 Interaction Between Laser Beam and Graphene 52
 3.2.1 Damage Threshold of Graphene Irradiated by Single
 Pulse Laser 52
 3.2.2 The Change of the Morphology of Graphene Under
 Ultrafast Laser 54
 3.2.3 Experimental Processing of Graphene Structure Under
 Ultrafast Laser Irradiation 56
 3.3 Interaction Between Ion Beam and Graphene 57
 3.3.1 The Phenomenon of Graphene Irradiated by Different
 Energy Ion Beam 57
 3.3.2 Effect of Substrate on Ion Beam Irradiation
 of Graphene 60
 3.4 Interaction Between Electron Beam and Graphene 64
 3.4.1 Experimental Study on the Change of Graphene Structure
 by Electron Beam Irradiation 65
 3.4.2 Mechanism of the Destruction of Graphene Structure
 Under Electron Beam Irradiation 67
 3.5 Chapter Summary 71
References .. 72

4 Doping of Graphene Using Low Energy Ion Beam
Irradiation and Its Properties 73
 4.1 Introduction .. 73
 4.2 Experimental Studies of Graphene Doping by Ion Beam
 Irradiation .. 73
 4.2.1 Experiment Procedure 73
 4.2.2 Experiment Results of Low Energy Ion Implantation
 Doping .. 74
 4.2.3 Summary of the Experiment 78
4.3 Theoretical Analysis of the Doping Mechanism ... 78
4.3.1 Research Model ... 79
4.3.2 Variation of Graphene Structure Under Nitrogen Ion Implantation 79
4.3.3 The Energy of the System Corresponding to the Different Doping Configurations ... 80
4.3.4 Influence of the Energy and Dose of Implanted Ion Beam 83
4.4 Mechanical Properties of Doped Graphene by Ion Beam Irradiation 84
4.4.1 MD Simulation Model .. 85
4.4.2 Effect of Implantation Doping on Tensile Stress Distribution of Graphene 86
4.4.3 The Influence of Doping Concentration and Doping Ion Distribution 87
4.4.4 Influence of Defect Concentration and Doping Element Type 89
4.5 Electronic Transport Properties of Doped Graphene ... 90
4.5.1 Research Model .. 91
4.5.2 Electronic Transport Properties Under Different Doping Forms 92
4.5.3 Effect of Doping Position on Electrical Performance 95
4.6 Summary .. 97

References .. 98

5 Joining of Graphene by Particle Beam Irradiation and Its Properties 99
5.1 Introduction .. 99
5.2 Experimental Studies of Graphene Joining by Particle Beam Irradiation 99
5.2.1 Preparation and Characterization of Graphene Joining Samples 100
5.2.2 Graphene Joining by Ion Beam Irradiation 104
5.2.3 Graphene Joining by Laser Irradiation and Thermal and Annealing 106
5.2.4 Experiment Summary ... 110
5.3 Theoretical Analysis of the Joining Mechanism .. 110
5.3.1 Graphene Joining Under Laser Beam Irradiation 111
5.3.2 Joining of Graphene by Ion Beam Irradiation 116
5.4 Mechanical Properties of the Graphene Joint .. 120
5.4.1 Mechanical Properties of Butt Joint of Graphene 120
5.4.2 Mechanical Properties of Overlapped Graphene Joint 125
5.4.3 Mechanical Properties of Butt Joint Constituted by Multi Pieces of Graphene ... 129
6 Fabrication of Graphene Nanopore by Particle Beam Irradiation and Its Properties

6.1 Introduction ... 143
6.2 Experimental Studies of Fabrication of Graphene Nanopore by Particle Beam Irradiation ... 144
 6.2.1 Experiment Procedure 144
 6.2.2 Morphology Analysis of Graphene Nanopore 145
 6.2.3 Effect of Ion Beam Dose on the Properties of Graphene Nanopore 148
 6.2.4 Summary of the Experiment 149
6.3 Theoretical Analysis of the Fabrication Mechanism of Graphene Nanopore ... 149
 6.3.1 Research Model 149
 6.3.2 Processing Mechanism of Nanopore 152
 6.3.3 Influencing Factors of Nanopore Processing 155
6.4 Mechanical Properties of Graphene Nanopore 160
 6.4.1 Research Model 160
 6.4.2 Tensile Failure Process of Graphene Nanopore 161
 6.4.3 Effect of Graphene Chirality on Dynamic Failure Process .. 162
 6.4.4 Effect of Nanopore Size on Mechanical Properties 164
 6.4.5 Effect of Vacancy Defect on Mechanical Properties of Nanopore 165
6.5 Electronic Transport Properties of Graphene Nanopore 169
 6.5.1 Research Model 169
 6.5.2 Effect of Nanopore Size on Electrical Properties 170
 6.5.3 Effect of Vacancy Defect on Electrical Performance 172
 6.5.4 Effect of Nanopore Shape on Electrical Properties 173
6.6 Summary .. 175
References. .. 175

7 Conclusion ... 179
7.1 The Main Conclusions 179
7.2 Future Plan ... 182
Influence of Particle Beam Irradiation on the Structure and Properties of Graphene
Wu, X.
2018, XV, 182 p. 125 illus., 115 illus. in color., Hardcover