3 Unified Yield Criterion

3.1 Introduction .. 39
3.2 General Behavior of the Yield Function 40
 3.2.1 Hydrostatic Stress Independence 41
 3.2.2 The Tensile Yield Stress Equals the Compressive
 Yield Stress 42
 3.2.3 Symmetry of the Yield Function 42
3.3 Yield Surface 43
3.4 Mechanical Model of the Unified Yield Criterion 44
3.5 Unified Yield Criterion 45
3.6 Other Forms of the Unified Yield Criterion 47
 3.6.1 Single-Shear Yield Criterion ($b = 0$) 48
 3.6.2 New Yield Criterion ($b = 1/4$) 49
 3.6.3 New Yield Criterion ($b = 1/2$) 50
 3.6.4 New Yield Criterion ($b = 3/4$) 54
 3.6.5 Twin-Shear Yield Criterion ($b = 1$) 54
3.7 Special Cases of the UYC (Unified Yield Criterion) 47
 3.7.1 Single-Shear Yield Criterion ($b = 0$) 48
 3.7.2 New Yield Criterion ($b = 1/4$) 49
 3.7.3 New Yield Criterion ($b = 1/2$) 50
 3.7.4 New Yield Criterion ($b = 3/4$) 54
 3.7.5 Twin-Shear Yield Criterion ($b = 1$) 54
3.8 Determination of the UYC Parameter b 56
3.9 Unified Yield Criterion in the Plane Stress State 57
 3.9.1 $\sigma_1 \geq \sigma_2 > 0, \sigma_3 = 0$ 58
 3.9.2 $\sigma_1 \geq 0, \sigma_2 = 0, \sigma_3 < 0$ 58
 3.9.3 $\sigma_1 = 0, \sigma_2 \geq \sigma_3 < 0$ 58
3.10 Unified Yield Criterion in the $\sigma-\tau$ Stress State 61
3.11 Examples .. 62
 3.11.1 Example 3.1 63
 3.11.2 Example 3.2 66
3.12 Summary .. 68

4 Verification of the Yield Criterion 73
4.1 Introduction .. 73
4.2 Comparison of the Unified Yield Criterion with the General
 Behavior of the Yield Criterion 73
 4.2.1 Hydrostatic Stress Independence 74
 4.2.2 The Tensile Yield Stress Equals the Compressive
 Yield Stress 74
 4.2.3 Symmetry of the Yield Function 75
4.3 Comparison of the Unified Yield Criterion with Experimental
 Data .. 75
4.4 Comparison of the Yield Criteria with the Tests of Taylor
 and Quinney 78
4.5 Comparison of the Yield Criteria with the Tests of Ivey 79
4.6 Comparison of the Yield Criteria with the Tests of Winstone .. 80
4.7 Comparison of the Yield Criteria with the Experimental Results of Ellyin 82
4.8 Summary .. 85

5 Extended Unified Yield Criterion ... 89
 5.1 Introduction ... 89
 5.2 Extended Unified Yield Criterion 90
 5.3 Special Cases of the Extended Unified Yield Criterion .. 91
 5.3.1 Extended Single-Shear Yield Criterion (Extended Tresca Yield Criterion) 91
 5.3.2 New Extended Yield Criterion \(b = 1/4 \) ... 92
 5.3.3 New Extended Yield Criterion \(b = 1/2, \) Linear Drucker–Prager Criterion 93
 5.3.4 New Extended Yield Criterion \(b = 3/4 \) ... 94
 5.3.5 New Extended Yield Criterion \(b = 1, \) Extended Twin-Shear Yield Criterion 95
 5.4 Yield Loci of the Extended Yield Criterion in the Meridian and Deviatoric Planes 96
 5.5 Quadratic Extended Unified Yield Criterion 99
 5.6 Summary .. 100

6 Basic Characteristics of Strength of Materials Under Complex Stress ... 103
 6.1 Introduction ... 103
 6.2 Strength Difference Effect in Tension and Compression (SD Effect) ... 104
 6.3 Effect of Hydrostatic Stress .. 105
 6.4 Effect of Normal Stress .. 111
 6.5 Effect of Stress Angle .. 113
 6.6 Research on the Effect of Intermediate Principal Stress ... 114
 6.7 Effects of the Intermediate Principal Stress in Metals .. 115
 6.8 Effects of the Intermediate Principal Stress in Rock .. 118
 6.9 Characteristics of the Effect of Intermediate Principal Stress in Rock 126
 6.10 Effects of the Intermediate Principal Stress in Concrete ... 127
 6.11 Engineering Applications of the Effect of Intermediate Principal Stress in Concrete 131
 6.12 Summary .. 134
 6.13 Readings .. 134
7 Principles for Comment, Formulation and Choice of the Strength Theory Function .. 139
7.1 Introduction .. 139
7.2 Principle 1: A Strength Theory Function Must Contain All the Three Variables Both in Principal Stress Coordinate and Stress Invariant Coordinate ... 139
7.3 Principle 2: Three-fold Symmetry and Six-fold Symmetry 140
7.4 Principle 3: Drucker Postulate and Convexity of the Limit Surface .. 142
7.5 Principle 4: Two Boundaries of the Limit Surface 144
7.6 Principle 5: The Strength Theory Function Should Be Fitted to Test Results .. 146
7.7 Applications of the Principles 147
7.8 Summary .. 149
8 Unified Strength Theory (UST) ... 153
8.1 Introduction .. 153
8.2 Voigt-Timoshenko Conundrum 154
8.3 Mechanical Model of the Unified Strength Theory 155
8.4 Mathematical Modelling of the Unified Strength Theory 157
8.5 Experimental Determination of Material Parameters 157
8.6 Mathematical Expression of the Unified Strength Theory 158
8.7 Other Formulations of the Unified Strength Theory 158
8.7.1 In Terms of Stress Invariant \(F(I_1, J_2, \theta, \sigma_s, \alpha) \) 158
8.7.2 In Terms of Principal Stress and Cohesive Parameter \(F(\sigma_1, \sigma_2, \sigma_3, C_0, \varphi) \) .. 159
8.7.3 In Terms of Stress Invariant and Cohesive Parameter \(F(I_1, J_2, \theta, C_0, \varphi) \) .. 159
8.7.4 In Terms of Principal Stresses and Compressive Strength Parameter \(F(\sigma_1, \sigma_2, \sigma_3, \alpha, \sigma_c) \) 160
8.7.5 In Terms of Stress Invariant and Compressive Strength Parameter \(F(I_1, J_2, \theta, \alpha, \sigma_c) \) 160
8.8 Relation Among the Parameters of the UST 161
8.9 Special Cases of the UST for Different Parameter \(b \) 161
8.10 Special Cases of the UST by Varying Parameter \(\alpha \) 163
8.11 Limit Loci of the UST by Varying Parameter \(b \) in the \(\pi \)-Plane ... 164
8.12 Variation of Limit Loci of the UST When \(\alpha = \frac{1}{2} \) 167
8.13 Limit Surfaces of the Unified Strength Theory in Principal Stress Space ... 170
8.14 Limit Loci of the Unified Strength Theory in the Plane Stress State .. 173
 8.14.1 Variation of the Unified Strength Theory with b 174
 8.14.2 Limit Locus of the Unified Strength Theory by Varying α 175
8.15 Limit Loci of the Unified Strength Theory Under the $\sigma - \tau$ Combined Stress State 177
8.16 Unified Strength Theory in Meridian Plane 178
8.17 Generalizations of the UST 181
8.18 Effective Stress UST for Saturated and Unsaturated Soils 183
8.19 Significance of the UST .. 184
8.20 Summary .. 186
8.21 Readings ... 188

9 Experimental Verification of Strength Theory 193
 9.1 Introduction .. 193
 9.2 Equipment for Complex Stress State Experiments 193
 9.2.1 Experimental Equipment for Tension (Compression)–Torsion Stress States 194
 9.2.2 Biaxial Plane Experimental Equipment .. 194
 9.2.3 Equipment for Axisymmetric Triaxial Experiments 195
 9.2.4 Equipment for True Triaxial Experiments 196
 9.3 Axial–Loading and Torsion Experiments 200
 9.4 Experimental Verification of Strength Theory for Rock 201
 9.5 Experiments on Rock Under True Triaxial Stress 204
 9.5.1 Strength of Rock Under High Pressure 205
 9.5.2 The Effect of Intermediate Principal Stress 205
 9.5.3 The Effect of Stress Angle 206
 9.5.4 Limit Meridian Loci 207
 9.5.5 The Limit Loci on the π–Plane 208
 9.6 Experimental Verification of Strength Theory for Concrete 209
 9.7 Experimental on Clay and Loess Under Complex Stress 213
 9.8 Experiments on Sand Under Complex Stress 214
 9.9 The Ultimate Dynamic Strength of Sand Under Complex Stress ... 216
 9.10 Summary .. 218

10 Visualization of the Unified Strength Theory 221
 10.1 Introduction .. 221
 10.2 Visualization of the Unified Strength Theory 222
 10.2.1 The Visualization of the Twin-Shear Strength Theory ... 222
 10.2.2 Limit Surfaces of Unified Strength Theory 223
10.2.3 Limit Surfaces of Unified Yield Criterion 226
10.3 Other Forms of Graphic Expression of UST 229
10.3.1 Limit Loci of UST in the Plane Stress State 229
10.3.2 Limit Loci of UST in the π-Plane 230
10.4 Kolupaev Figure 231
10.5 Summary 232

11 Equivalent Stress of the Unified Strength Theory and Comparisons with Other Theories 235
11.1 Introduction 235
11.2 Equivalent Stress 236
11.2.1 Equivalent Stresses for Non-SD Materials 236
11.2.2 Equivalent Stresses for SD Materials 236
11.3 A Comparison of Limit Loci in the Deviatoric Plane 238
11.3.1 A Comparison with Drucker–Prager Criterion 240
11.3.2 A Comparison with Matsuoka–Nakai Criterion 241
11.3.3 A Comparison with Gudehus–Argyris Criterion 242
11.3.4 A Comparison with Willam–Warnke Criterion 243
11.4 Summary 244

12 Economic Signification of the Unified Strength Theory 247
12.1 Introduction 247
12.2 A Trapezoidal Structure 248
12.3 A Spatial Axisymmetric Problem 250
12.4 Thin-Walled Pressure Vessel Design 251
12.5 Elastic Limit Pressure of Thick-Walled Cylinders 253
12.6 Summary 260

13 Rhombicuboctahedron Stress Strength Theory 263
13.1 Introduction 263
13.2 Rhombicuboctahedron Model 264
13.3 Rhombicuboctahedron Stress Strength Theory 267
13.4 Application of the Rhombicuboctahedron Stress Strength Theory 269
13.5 Summary 269

14 The Beauty of Strength Theories 273
14.1 Introduction 273
14.2 The Beauty of Science 273
14.3 Garden of Strength Theories 274
14.4 Beauty of the Huber-Mises Theory 275
14.5 Beauty of the Unified Strength Theory 275
14.5.1 Simplicity 278
14.5.2 Unification 278
14.5.3 Clarity and Extension 279
14.5.4 Symmetry 280
14.5.5 Analogy 280
14.5.6 Diversity and Innovation 280
14.6 Summary .. 281

15 Applications of the Unified Strength Theory 285
15.1 Introduction .. 285
15.2 Application of UST on the Shape and Size of the Crack Tip
 Plastic Zone .. 287
 15.2.1 Mode I Crack in Plane Stress State 287
 15.2.2 Mode I Crack in Plane Strain 289
 15.2.3 Mode II Crack in Plane Stress 290
 15.2.4 Mode II Crack in Plane Strain State 291
15.3 Application of UYC on FEM Analysis for Limit-Bearing Capacity of Plate 292
15.4 Application of UYC on FEM Analysis of Plastic Zones for Thick-Walled Cylinders 294
15.5 Application of UYC on FEM Analysis of Plastic Zone for a Strip with a Hole 296
15.6 Application of UST on FEM Analysis of Plastic Zone for Circular Cave 298
15.7 FEM Analysis of Composite Using UYC 300
15.8 Application of UST on FEM Analysis for Underground Caves 303
15.9 Summary .. 306

16 Historical Reviews .. 311
16.1 Introduction .. 311
16.2 Strength Theories Before the Twentieth Century 312
 16.2.1 Early Work 312
 16.2.2 Strength Theories Before the Twentieth Century 314
 16.2.3 Strength Theories at the Beginning of the Twentieth Century 316
16.3 Three Series of Strength Theories 319
 16.3.1 Single-Shear Strength Theory (SSS Theory) 319
 16.3.2 Octahedral-Shear Strength Theory (OSS Theory) 324
 16.3.3 Twin-Shear Strength Theory (TSS Theory) 330
16.4 Establishment of the Unified Yield Criterion 335
 16.4.1 Curved General Yield Criterion 335
 16.4.2 Linear Unified Yield Criterion 337
16.5 Failure Criteria of Rock, Concrete, Soil, Iron, Polymer
 and Other Materials 339
 16.5.1 Failure Criteria for Rock 340
 16.5.2 Failure Criteria for Concrete 341
Unified Strength Theory and Its Applications
Yu, M.-H.
2018, XXII, 463 p. 261 illus., 26 illus. in color., Hardcover