Contents

1 EAF in Global Steel Production; Energy and Productivity Problems ... 1
 1.1 Production of Steel from Scrap Is EAF’s Mission 1
 1.2 Melting a Scrap as a Key Process of the Heat 3
 1.3 Unjustified High Electrical Energy Consumption 3
 1.4 Problems of Ultra-High Power (UHP) EAFs with Regard to Energy .. 4
 1.5 High Productivity or Low Costs? 5
References ... 6

2 Analysis of Technologies and Designs of the EAF as an Aggregate for Heating and Melting of Scrap ... 7
 2.1 Melting a Scrap by Electric Arcs. Function of Hot Heel 7
 2.1.1 Single Scrap Charging 8
 2.1.2 Telescoping Shell 9
 2.2 Heating a Scrap by Burners in the Furnace Freeboard 9
 2.2.1 Specifics of Furnace Scrap Hampering Its Heating 9
 2.2.2 Stationary Burners and Jet Modules 10
 2.2.3 Rotary Burners with Changing the Flame Direction .. 14
 2.2.4 Two-Stage Scrap Melting. Industrial Testing of the Process ... 19
 2.2.5 Twin-Shell EAFs ... 22
 2.3 EAF with Preheating a Scrap by Off-Gases and Melting of Preheated Scrap in Liquid Metal 25
 2.3.1 Conveyor Furnaces of Consteel-Type 25
 2.3.2 Shaft Furnaces with Fingers Retaining Scrap 29
 2.3.3 Shaft Furnaces with Pushers of the COSS-Type 35
2.4 Factors Hindering Wide Spread of Shaft Furnaces 37
 2.4.1 Calculation of the Maximum Values of the Power of the Heat Flow of Off-Gases and Temperature of Scrap Heating by These Gases in the Shaft 38
References .. 39

3 Experimental Data on Melting a Scrap in Liquid Metal Required for Calculation of This Process ... 41
 3.1 Features of Scrap Melting Process 41
 3.2 Studies of the Melting Process by the Method of Immersion of Samples in a Liquid Metal. Analysis of the Results 43
 3.2.1 Melting of Single Samples of Scrap with a Solidified Layer and Without Solidifying 43
 3.2.2 Co-melting of Multiple Samples 48
 3.2.3 Porosity of Charging Zone and Bulk Density of Scrap 50
References .. 50

4 Calculations of Scrap Melting Process in Liquid Metal 51
 4.1 Scrap Melting Time .. 51
 4.2 Adaptation of Experimental Data Obtained by the Method of Melting Samples to Real Conditions of Scrap Melting 52
 4.2.1 Equivalent Scrap .. 52
 4.2.2 Correction Coefficients K_P, K_L, K_{ts} and K_a 53
 4.3 Calculation Method of Scrap Melting Time in Liquid Metal 55
 4.3.1 General Characteristic of the Method 55
 4.3.2 Examples of Calculations of Scrap Melting Time 55
 4.3.3 Specific Scrap Melting Rate 58
References .. 59

5 Increasing Scrap Melting Rate in Liquid Metal by Means of Oxygen Bath Blowing .. 61
 5.1 Preliminaries .. 61
 5.2 Tuyeres with Evaporation Cooling Embedded in the Lining 63
 5.3 Roof Water-Cooled Tuyeres for Bath Blowing at Slag-Metal Interface ... 66
 5.3.1 Thermal Operation of Tuyeres: Heat Flows, Temperatures .. 66
 5.3.2 Roof Tuyere with Jet Cooling: Design, Basic Parameters ... 73
References. ... 78
Fuel Arc Furnace (FAF) for Effective Scrap Melting
From EAF to FAF
Toulouevski, Y.N.; Zinurov, I.Y.
2017, IX, 94 p. 23 illus., Softcover
ISBN: 978-981-10-5884-4