Contents

1 **Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment** ... 1
S. Dutta Gupta and A. Agarwal
1.1 Introduction .. 1
1.2 History of Development and Working Principles
of Conventional Lamps 4
1.2.1 Incandescent Lamps (ILs) 4
1.2.2 Gas Discharge Lamps (GDLs) 6
1.3 Light-Emitting Diodes (LEDs) 12
1.3.1 Development of LED Technology 12
1.3.2 Structure and Working Principle of LED 14
1.4 Comparative Assessment of the Different Artificial
Lighting Systems .. 16
1.4.1 Spectral Quality 17
1.4.2 Luminous Efficacy and Power Requirement 18
1.4.3 Heating of the Lamp 21
1.4.4 Life Span, Dimming, Directionality, Robustness,
and Safety ... 22
1.5 Conclusions .. 23
References ... 24

2 **LED Supplementary Lighting** 27
Yasuomi Ibaraki
2.1 Introduction .. 27
2.2 Advantages of LED for Supplementary Lighting Systems 28
2.3 Supplementary Lighting for Photosynthesis 29
2.4 Supplementary Lighting for Controlling Morphogenesis 30
2.5 Supplementary Lighting for Other Purposes 31
2.5.1 Protection from Plant Disease 31
7 LED Lighting in Horticulture .. 113
 Akvišė Viršilė, Margit Olle and Pavelas Duchovskis
 7.1 Introduction .. 113
 7.2 The Concept of Horticultural LED Lighting
 and Its Emergence 114
 7.2.1 The Concept of Light Spectral Efficiency 115
 7.2.2 LEDs in Greenhouse and Closed Environment
 Horticulture 117
 7.3 LEDs Versus High-Pressure Sodium Lighting 118
 7.4 LED Lighting for Main Horticultural Crops 119
 7.4.1 Microgreens 119
 7.4.2 Lettuce and Other Leafy Greens 120
 7.4.3 Vegetable Transplants 129
 7.4.4 Greenhouse Vegetable Production 135
 7.4.5 Ornamental Plants 136
 7.5 Conclusions .. 140
 References ... 141

8 Light-Emitting Diodes (LEDs) for Improved
 Nutritional Quality 149
 Giedrė Samuolienė, Aušra Brazaitytė and Viktorija Vaštakaitė
 8.1 Introduction .. 149
 8.2 Phenolic Compounds 151
 8.3 Carotenoids ... 173
 8.4 Tocopherols .. 178
 8.5 Ascorbic Acid 179
 8.6 Conclusions .. 182
 References ... 183

9 Light-Emitting Diodes in Postharvest Quality Preservation
 and Microbiological Food Safety 191
 Craig D’Souza, Hyun-Gyun Yuk, Gek Hoon Khoo and Weibiao Zhou
 9.1 Introduction .. 191
 9.2 Brief Recapitulation of LED Technology and the Measurement
 of Light ... 193
 9.3 LEDs in Postharvest Quality Preservation of Fruits
 and Vegetables 195
 9.3.1 Delay of Senescence in Vegetables Through LEDs ... 196
 9.3.2 Enhancement of Nutritional Status of Vegetables
 and Fruits Through LEDs 201
 9.3.3 Accelerating or Delaying the Ripening of Fruits
 Using LEDs 202
 9.3.4 Preventing Fungal Spoilage Through LEDs 203
 9.3.5 Evaluation of LEDs in Postharvest Preservation 205
9.4 LEDs in Food Safety .. 206
 9.4.1 PDI Using Exogenous Photosensitizers 207
 9.4.2 PDI Through Endogenous Photosensitizers 209
 9.4.3 UV LEDs .. 215
 9.4.4 Photocatalytic Oxidation Using LEDs 216
 9.4.5 Effect of PDI Treatments Using LEDs on Food Products .. 217
 9.4.6 PDI in Decontamination of Food Surface Through Packaging Materials Using LEDs 223
 9.4.7 Evaluation of Role of LEDs in Microbiological Food Safety .. 226
9.5 Conclusion .. 227
References .. 229

10 Regulation of Gene Expression by LED Lighting 237
S. Dutta Gupta and S. Pradhan
 10.1 Introduction ... 237
 10.2 LED-Regulated Gene Expression 238
 10.2.1 LED-Regulated Gene Expression of Photoreceptors and Auxin Responsive Factors 239
 10.2.2 LED-Induced Gene Expression of Carotenoid Biosynthesis ... 245
 10.2.3 Regulation of Gene Expression Involved in Flavonoid Biosynthesis by LED Lighting 247
 10.2.4 LED Effects on Gene Expression Associated with Ascorbate Metabolism 249
 10.2.5 LED-Induced Defense and Transcript of Defense Genes .. 251
 10.3 Conclusions ... 253
References .. 254

11 The Influence of Light-Emitting Diodes (LEDs) on the Growth, Antioxidant Activities, and Metabolites in Adventitious Root of Panax ginseng C.A. Meyer 259
Bimal Kumar Ghimire, Jae Geun Lee, Ji Hye Yoo, Jae Kwang Kim and Chang Yeon Yu
 11.1 Introduction .. 259
 11.2 Culture Establishment and Light Treatments 261
 11.3 Measurement of Electron Donation Ability and Analysis of Metabolites 262
 11.4 Influence of LEDs on the Growth of Adventitious Roots ... 262
 11.5 Analysis of Phenolic Acids in Adventitious Roots 265
Light Emitting Diodes for Agriculture
Smart Lighting
Dutta Gupta, S. (Ed.)
2017, XIX, 334 p. 71 illus., Hardcover
ISBN: 978-981-10-5806-6