Contents

1 **Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment** 1
S. Dutta Gupta and A. Agarwal

1.1 Introduction .. 1

1.2 History of Development and Working Principles of Conventional Lamps 4

1.2.1 Incandescent Lamps (ILs) 4

1.2.2 Gas Discharge Lamps (GDLs) 6

1.3 Light-Emitting Diodes (LEDs) 12

1.3.1 Development of LED Technology 12

1.3.2 Structure and Working Principle of LED 14

1.4 Comparative Assessment of the Different Artificial Lighting Systems 16

1.4.1 Spectral Quality 17

1.4.2 Luminous Efficacy and Power Requirement 18

1.4.3 Heating of the Lamp 21

1.4.4 Life Span, Dimming, Directionality, Robustness, and Safety 22

1.5 Conclusions .. 23

References ... 24

2 **LED Supplementary Lighting** 27
Yasuomi Ibaraki

2.1 Introduction .. 27

2.2 Advantages of LED for Supplementary Lighting Systems 28

2.3 Supplementary Lighting for Photosynthesis 29

2.4 Supplementary Lighting for Controlling Morphogenesis 30

2.5 Supplementary Lighting for Other Purposes 31

2.5.1 Protection from Plant Disease 31
5 Economics of LED Lighting .. 81
Bruce Bugbee
5.1 Introduction .. 81
5.2 Economics of LED Lighting: Initial Analysis in 2014 82
5.3 The Best Measure of Electrical Efficiency for Plant
 Growth Is jumoles per Joule 82
5.4 The Value of Focused Photons from LED Fixtures 83
5.5 Unique Characteristics of LED Fixtures 84
5.6 Advances in LED Efficacy Since 2014 85
5.7 Definition of Efficacy and Efficiency 86
5.8 Thermal Effect of Electric Lighting Technologies 86
 5.8.1 Effects of Elevated CO₂ on Leaf Temperature 89
 5.8.2 Effect of Light Technology on Shoot
 Tip Temperature .. 89
 5.8.3 Effect of Light Technology on Fruit
 and Flower Temperature 89
5.9 Spectral Effects on Single Leaf Photosynthesis 89
5.10 Determining Whole Plant Net Photosynthesis from Crop
 Growth Rate and Leaf Area Index 91
5.11 The Importance of Radiation Capture Efficiency 92
5.12 Spectral Effects on Single Leaf Photosynthetic Efficiency .. 92
5.13 Effect of Fraction of Blue Light on Growth 93
5.14 Effect of Blue Light Fraction on Development 93
5.15 Effect of Green Light Fraction on Photosynthesis
 and Growth, ... 93
5.16 Conclusions ... 96
References ... 97

6 An Overview of LED Lighting and Spectral Quality
 on Plant Photosynthesis .. 101
Most Tahera Naznin and Mark Lefsrud
6.1 Introduction .. 101
6.2 Light-Emitting Diodes (LEDs) 102
6.3 Photosynthetic Reaction 103
6.4 Photosynthetic Pigments 106
6.5 Effects of LEDs on Chlorophyll Fluorescence 107
6.6 LEDs on Plant Photosynthesis and Growth 108
6.7 Conclusion ... 109
References ... 109
7 LED Lighting in Horticulture

Akvilė Viršilė, Margit Olle and Pavelas Duchovskis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>7.2 The Concept of Horticultural LED Lighting and Its Emergence</td>
<td>114</td>
</tr>
<tr>
<td>7.2.1 The Concept of Light Spectral Efficiency</td>
<td>115</td>
</tr>
<tr>
<td>7.2.2 LEDs in Greenhouse and Closed Environment Horticulture</td>
<td>117</td>
</tr>
<tr>
<td>7.3 LEDs Versus High-Pressure Sodium Lighting</td>
<td>118</td>
</tr>
<tr>
<td>7.4 LED Lighting for Main Horticultural Crops</td>
<td>119</td>
</tr>
<tr>
<td>7.4.1 Microgreens</td>
<td>119</td>
</tr>
<tr>
<td>7.4.2 Lettuce and Other Leafy Greens</td>
<td>120</td>
</tr>
<tr>
<td>7.4.3 Vegetable Transplants</td>
<td>129</td>
</tr>
<tr>
<td>7.4.4 Greenhouse Vegetable Production</td>
<td>135</td>
</tr>
<tr>
<td>7.4.5 Ornamental Plants</td>
<td>136</td>
</tr>
<tr>
<td>7.5 Conclusions</td>
<td>140</td>
</tr>
</tbody>
</table>

8 Light-Emitting Diodes (LEDs) for Improved Nutritional Quality

Giedrė Samuoliene, Aušra Brazaitytė and Viktorija Vaštakaitė

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>8.2 Phenolic Compounds</td>
<td>151</td>
</tr>
<tr>
<td>8.3 Carotenoids</td>
<td>173</td>
</tr>
<tr>
<td>8.4 Tocopherols</td>
<td>178</td>
</tr>
<tr>
<td>8.5 Ascorbic Acid</td>
<td>179</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>182</td>
</tr>
</tbody>
</table>

9 Light-Emitting Diodes in Postharvest Quality Preservation and Microbiological Food Safety

Craig D’Souza, Hyun-Gyun Yuk, Gek Hoon Khoo and Weibiao Zhou

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>9.2 Brief Recapitulation of LED Technology and the Measurement of Light</td>
<td>193</td>
</tr>
<tr>
<td>9.3 LEDs in Postharvest Quality Preservation of Fruits and Vegetables</td>
<td>195</td>
</tr>
<tr>
<td>9.3.1 Delay of Senescence in Vegetables Through LEDs</td>
<td>196</td>
</tr>
<tr>
<td>9.3.2 Enhancement of Nutritional Status of Vegetables and Fruits Through LEDs</td>
<td>201</td>
</tr>
<tr>
<td>9.3.3 Accelerating or Delaying the Ripening of Fruits Using LEDs</td>
<td>202</td>
</tr>
<tr>
<td>9.3.4 Preventing Fungal Spoilage Through LEDs</td>
<td>203</td>
</tr>
<tr>
<td>9.3.5 Evaluation of LEDs in Postharvest Preservation</td>
<td>205</td>
</tr>
</tbody>
</table>
9.4 **LEDs in Food Safety** ... 206
 9.4.1 PDI Using Exogenous Photosensitizers 207
 9.4.2 PDI Through Endogenous Photosensitizers 209
 9.4.3 UV LEDs ... 215
 9.4.4 Photocatalytic Oxidation Using LEDs 216
 9.4.5 Effect of PDI Treatments Using LEDs on Food Products ... 217
 9.4.6 PDI in Decontamination of Food Surface Through Packaging Materials Using LEDs 223
 9.4.7 Evaluation of Role of LEDs in Microbiological Food Safety ... 226
9.5 Conclusion .. 227
References .. 229

10 **Regulation of Gene Expression by LED Lighting** 237
 S. Dutta Gupta and S. Pradhan
 10.1 Introduction ... 237
 10.2 LED-Regulated Gene Expression 238
 10.2.1 LED-Regulated Gene Expression of Photoreceptors and Auxin Responsive Factors 239
 10.2.2 LED-Induced Gene Expression of Carotenoid Biosynthesis ... 245
 10.2.3 Regulation of Gene Expression Involved in Flavonoid Biosynthesis by LED Lighting 247
 10.2.4 LED Effects on Gene Expression Associated with Ascorbate Metabolism 249
 10.2.5 LED-Induced Defense and Transcript of Defense Genes ... 251
 10.3 Conclusions .. 253
References .. 254

11 **The Influence of Light-Emitting Diodes (LEDs) on the Growth, Antioxidant Activities, and Metabolites in Adventitious Root of Panax ginseng C.A. Meyer** 259
 Bimal Kumar Ghimire, Jae Geun Lee, Ji Hye Yoo,
 Jae Kwang Kim and Chang Yeon Yu
 11.1 Introduction .. 259
 11.2 Culture Establishment and Light Treatments 261
 11.3 Measurement of Electron Donation Ability and Analysis of Metabolites 262
 11.4 Influence of LEDs on the Growth of Adventitious Roots .. 262
 11.5 Analysis of Phenolic Acids in Adventitious Roots ... 265
11.6 Analysis of Lipophilic Compounds in Adventitious Roots 266
11.7 Effect of Different LEDs on Radical Scavenging Activity 267
11.8 Conclusion .. 268
References .. 269

12 Influence of LED Lighting on In Vitro Plant Regeneration and Associated Cellular Redox Balance 273
S. Dutta Gupta and A. Agarwal
12.1 Introduction .. 273
12.2 Impact of LEDs on In Vitro Plant Regeneration 275
12.2.1 Effects of LED Lighting on Shoot Organogenesis and In Vitro Plantlet Development 276
12.2.2 Influence of LEDs on Somatic Embryogenesis 286
12.2.3 Effect of LED Irradiations on Ex Vitro Acclimatization 288
12.3 Effect of LEDs on ROS Regulatory Mechanisms During In Vitro Plant Morphogenesis and Ex Vitro Acclimatization 290
12.4 Conclusions .. 297
References .. 298

13 Impact of Light-Emitting Diodes (LEDs) on Propagation of Orchids in Tissue Culture 305
E. Hanus-Fajerska and R. Wojciechowska
13.1 Introduction .. 305
13.2 The Modes of Propagation Under In Vitro Conditions Using Representatives of Orchidaceae 307
13.3 The Role of Light in the In Vitro Propagation of Orchids 308
13.4 Application of LED Light in Improving Tissue Culture of Orchids .. 309
13.5 Conclusions .. 315
References .. 315

14 LEDs and Their Potential in Somatic Embryogenesis of Panax vietnamensis Ha et Grushv. 321
Duong Tan Nhu, Nguyen Phuc Huy, Hoang Thanh Tung, Vu Quoc Luan and Nguyen Ba Nam
14.1 Introduction .. 321
14.2 Establishment of Callus Cultures and Growth of Callus 322
14.3 Development of Embryogenic Cultures 323
14.4 Plantlet Development 326
14.5 Influence of LEDs on Saponin Accumulation 327
14.6 Conclusion .. 328
References .. 329

Index .. 331