Contents

1 **Introduction** 1
 1.1 Engineering Materials and Its Surface. 1
 1.2 Surface Engineering and Its Classification 2
 1.2.1 Concept of Surface Engineering 2
 1.2.2 Surface Hardening Technology 3
 1.2.3 Surface Covering Technology 4
 1.2.4 Surface Alloying/Metallurgy Technology 5
 1.2.5 Classification Table 6
 1.3 Existing Surface Alloying Technology 7
 1.3.1 Conventional Surface Alloying Technology 7
 1.3.2 Modern Surface Alloying Technology 8
 1.3.3 Concept of Plasma Surface Metallurgy 8
 1.4 Glow Discharge and Plasma Nitriding 9
 1.4.1 History of Glow Discharge 9
 1.4.2 Concept of Plasma 10
 1.4.3 Advent of Plasma Nitriding in Germany 10
References ... 11

2 **Plasma Nitriding** 13
 2.1 Glow Discharge and Its Characteristics 13
 2.1.1 Characteristics of Glow Discharge 13
 2.1.2 Stratified Phenomenon 14
 2.1.3 Interactions Between Ions and Material Surface 15
 2.2 Plasma Nitriding Process 17
 2.2.1 Basic Principle 17
 2.2.2 Advantages 18
 2.2.3 Industrial Applications 18
 2.3 Other Plasma Surface Alloying Technology 19
 2.3.1 Plasma Carburizing 19
 2.3.2 Plasma Nitro-Carburizing 19

References ... 11
2.3.3 Plasma Sulphurizing 19

2.4 Restriction of Plasma Nitriding 20

2.5 Development of Plasma Nitriding in China 20

References ... 21

3 Double Glow Discharge Phenomenon and Its Applications 23

3.1 What Is Double Glow Discharge Phenomenon? 23

3.2 Discovery of Double Glow Discharge 24

3.3 Double Glow Discharge Modes 25

3.3.1 Independent Discharge Mode 25

3.3.2 Dependent Discharge Mode............................... 25

3.3.3 Pulse Discharge Mode 26

3.3.4 Other Discharge Mode 26

3.4 Double Glow Hollow Cathode Discharge (DG-HCD) 26

3.4.1 Hollow Cathode Discharge (HCD) 26

3.4.2 Concept of DG-HCD 28

3.4.3 Current Amplification Effect of DG-HCD 29

3.5 Advent of Double Glow Plasma Surface Alloying/Metallurgy (Xu-Tec Process) 30

3.5.1 First Experimental Device 30

3.5.2 First Microstructure of Tungsten Surface Alloy 31

3.5.3 Other Considerations 32

References ... 32

4 Double Glow Plasma Surface Alloying/Metallurgy Technology ... 33

4.1 Introduction .. 33

4.2 Basic Principle 34

4.3 Diffusion Mechanism 36

4.4 Process Operation 37

4.5 Configuration of Working-Piece and Source Electrode 38

4.5.1 Plate Type 38

4.5.2 Cave Type 39

4.5.3 Deep Well Type 40

4.6 Technological Parameters 40

4.6.1 Measurable Parameters 40

4.6.2 Typical Process Parameters 47

4.6.3 Nonmeasurable Parameters 48

4.7 Arc Discharge 49

4.7.1 Micro-Arc Discharge 50

4.7.2 Macro Arc Discharge 50

4.7.3 Harmfulness of Arc Discharge 51

4.7.4 Reasons of Arc Discharge 51
4.8 Cathode Power Transmission Device and Gap Protection 53
 4.8.1 Requirements of Cathode Transmission Device 54
 4.8.2 Principle of Gap Protection 54
 4.8.3 Example of Cathode Transmission Device 56
4.9 Advantages of Xu-Tec Process 56
4.10 Requirements for Operators 58
4.11 Xu-Tec Process in USA 58
4.12 Xu-Tec Process in China 59
4.13 Summary and Outlook 60
References .. 61

5 Physical Basis of Plasma Surface Metallurgy 63
 5.1 Glow Discharge and its Discharge Characteristics 63
 5.1.1 Gas Discharge .. 64
 5.1.2 Glow Discharge Process 64
 5.1.3 Stratification Phenomenon 66
 5.1.4 Glow Discharge Characteristics 68
 5.2 Low-Temperature Plasma 69
 5.2.1 Plasma and Its Generation 69
 5.2.2 Characteristics of Double Glow Discharge Plasma 71
 5.3 Ion Bombardment and Sputtering 73
 5.3.1 General Description of Sputtering Process 73
 5.3.2 Preferential Sputtering 75
 5.3.3 Alloy Sputtering 75
 5.4 Propagation of Glow Discharges 76
 5.4.1 Ionization Degree and Mean Free Path 77
 5.4.2 Propagation of Plasma in Double Glow Discharges ... 78
 5.5 Diffusion Process Under Ion Bombardment 79
 5.5.1 Diffusion Model 80
 5.5.2 Diffusion Mechanism 82
 5.6 Prospect .. 85
References .. 87

6 Plasma Surface Metallurgy of Iron and Steel 89
 6.1 Introduction .. 89
 6.1.1 Plasma Surface Alloying and Alloying Element 89
 6.1.2 Interaction of Alloying Element with Fe and C 90
 6.2 Single-Element Plasma Surface Metallurgy 91
 6.2.1 Plasma Surface W Alloying 91
 6.2.2 Plasma Surface Ti Alloying 92
 6.2.3 Plasma Surface Cr Alloying 93
 6.2.4 Plasma Surface Al Alloying 95
 6.2.5 Plasma Surface Mo Alloying 95
 6.2.6 Plasma Surface Ta Alloying 97
8 Plasma Surface Metallurgy of Titanium and Titanium Alloys... 129
 8.1 Introduction to Titanium and Titanium Alloys 129
 8.1.1 Classification and Properties 129
 8.1.2 Effect of Alloying Elements 130
 8.1.3 Optimal Alloying Parameters 131
 8.2 Plasma Surface Metallurgy Wear-Resistant Alloys 132
 8.2.1 Double Glow Plasma Molybdenizing 132
 8.2.2 Double Glow Plasma Molybdenitriding 135
 8.3 Plasma Surface Metallurgy Flame-Resistant Alloys 137
 8.3.1 Method for Protecting Titanium Alloy from
 “Titanium Fire” 137
 8.3.2 Plasma Surface Metallurgy Ti–Cu Flame-Resistant
 Alloy .. 139
 8.3.3 Plasma Surface Metallurgy Ti–Cr Flame-Resistant
 Alloy .. 141
 8.3.4 Plasma Surface Metallurgy Ti–Mo Flame-Resistant
 Alloy .. 143
 8.3.5 Plasma Surface Metallurgy Ti–Nb Flame-Resistant
 Alloy .. 148
 8.4 Plasma Surface Metallurgy Ti–Pd
 Corrosion-Resistant Alloy 149
 8.4.1 Overview of Corrosion-Resistant Titanium Alloys 149
 8.4.2 Plasma Surface Metallurgy Ti–Pd Alloy 150
 8.4.3 Corrosion Resistance of Plasma Surface
 Ti–Pd Alloy 151
 8.5 Plasma Surface Metallurgy Ti–Nb
 Corrosion-Resistant Alloy 152
 8.6 Plasma Surface Carburizing Without Hydrogen 153
 8.6.1 Plasma Carburizing with no Hydrogen 153
 8.6.2 Microstructure and Composition
 of Carburized Layer 154
 8.6.3 Tribological Properties 157
 8.7 Applications .. 158
 8.8 Prospect ... 159
 References .. 160

9 Plasma Surface Metallurgy of Intermetallic Compounds 163
 9.1 Background ... 163
 9.1.1 Intermetallic Compound and Its Classification 163
 9.1.2 Conventional Surface Treatment 165
9.2 Plasma Surface Metallurgy of TiAl 165
 9.2.1 Plasma Surface Metallurgy Nb-Alloy 165
 9.2.2 Plasma Surface Metallurgy Mo-Alloy 169
 9.2.3 Plasma Surface Metallurgy Cr-Alloy 172
 9.2.4 Plasma Surface Metallurgy Ni–Cr–Mo–Nb Alloy 174
9.3 Plasma Surface Metallurgy of Ti$_2$AlNb 174
 9.3.1 Plasma Surface Metallurgy Cr-Alloy 174
 9.3.2 Plasma Surface Metallurgy Mo-Alloy 175
9.4 Prospect ... 177
References ... 177

10 Plasma Surface Metallurgy of Other Materials 179
 10.1 Plasma Surface Metallurgy of Copper and Copper Alloys 179
 10.1.1 Plasma Surface Metallurgy Ti Alloy 180
 10.1.2 Plasma Surface Metallurgy Ni Alloy 182
 10.2 Plasma Surface Metallurgy of Niobium Alloy 182
 10.2.1 Plasma Surface Metallurgy Ir Alloy 183
 10.2.2 Plasma Surface Metallurgy Mo Alloy 183
 10.2.3 Plasma Surface Metallurgy Fe–Cr–Mo–Si Alloy 184
 10.3 Plasma Surface Metallurgy of Molybdenum 185
 10.4 Plasma Surface Metallurgy of Tungsten 186
 10.5 Plasma Surface Metallurgy of C/C Composite 187
 10.6 Plasma Surface Metallurgy Ta Alloy 188
 10.7 Plasma Surface Metallurgy Fe–Al–Cr Alloy 191
 10.8 Prospect ... 193
References ... 194

11 Gradient Ceramization of Metal Surface and Metallization of Ceramic Surface .. 197
 11.1 Ceramization of Carbon Steels 197
 11.1.1 Plasma Surface Metallurgy TiN Ceramic 198
 11.1.2 Plasma Surface Metallurgy WC Ceramic 203
 11.1.3 Plasma Surface Metallurgy TiC Ceramic 208
 11.1.4 Plasma Surface Metallurgy Ti(CN) Ceramics 210
 11.2 Metallization of Ceramics ... 211
 11.2.1 Metallization of TiSi$_{30}$ Ceramic 211
 11.2.2 Metallization of Si$_3$N$_4$ Ceramic 212
 11.2.3 Plasma Surface Metallurgy Ta–C on Diamond and Cemented Carbide ... 214
 11.2.4 Surface Metallization of Diamond Films 217
 11.3 Plasma Surface Metallurgy Gradient-Function Luminescent Ceramics Er–ZrO$_2$ on Ti6Al4V 218
11.3.1 Zirconia Functional Ceramics 218
11.3.2 Material Preparation and Processing Parameters 219
11.3.3 Microstructure Analysis 219
11.3.4 Friction and Wear Properties 221
11.3.5 Special Gradient Luminescent Properties 222
11.4 Prospect ... 223
References ... 224

12 Industrial Applications and Equipment Scaling-Ups of Xu-Tec

Process .. 227
12.1 Xu-Tec High-Speed Steel (HSS) Handsaw Blade 227
12.1.1 Xu-Tec HSS Process 227
12.1.2 Working-piece-Source Structure for Xu-Tec Handsaw
Blade .. 228
12.1.3 Production Processes 229
12.1.4 Microstructure and Composition 231
12.1.5 Cutting Performance 234
12.1.6 Industrialization 234
12.2 Xu-Tec HSS Treatment of Colloid Mill 235
12.2.1 Introduction ... 235
12.2.2 Process of Xu-Tec HSS Colloid Mill 236
12.2.3 Workpiece-Source Configuration Setup
for Colloid Mill .. 236
12.2.4 Surface Alloying, Carburizing, Quenching,
and Tempering .. 237
12.2.5 Assessment and Economic Benefits 241
12.3 Plasma Surface Metallurgy Ni–Cr Corrosion Resistant Alloy
Plate .. 241
12.3.1 Plasma Surface Ni–Cr Alloying 242
12.3.2 Workpiece-Source Setup for Steel Plate Alloying 242
12.3.3 Corrosion Resistance Test 243
12.3.4 The Most Important Industry Application 245
12.4 Plasma Surface Metallurgy Chemical Valves and Flanges 245
12.5 Xu-Tec Equipment 246
12.5.1 Diagram of Xu-Tec Industrial Furnace 246
12.5.2 Existing Furnaces and Its Applications 247
12.5.3 Composition and Function of Each Part 248
12.5.4 Technical Specifications 252
12.5.5 Differences Between Xu-Tec Furnace and Plasma
Nitriding Equipment .. 253
12.6 Prospect and Outlook 253
References ... 254
13 Other Technologies by Double Glow Discharge Plasma Phenomenon .. 257
 13.1 Arc Plasma Added Double Glow Surface Alloying Technology .. 257
 13.2 Double Glow Plasma Brazing Technology .. 258
 13.3 Double Glow Plasma Sintering Technology .. 259
 13.4 Double Glow Plasma Nano-Powder Technology 260
 13.5 Double Glow Plasma Thin Diamond Film Technology 261
 13.6 Double Glow Plasma Sputter Cleaning Technology 262
 13.7 Double Glow Plasma Chemistry .. 264
 13.8 Prospect ... 265
References .. 265

Closing Remarks .. 267
Plasma Surface Metallurgy
With Double Glow Discharge Technology—Xu-Tec Process
Xu, Z.; Xiong, F.F.
2017, XX, 269 p. 226 illus., 94 illus. in color., Hardcover
ISBN: 978-981-10-5722-9