Contents

1 Introduction ... 1
 1.1 General .. 1
 1.2 Safety Aspects 3
 References ... 3

2 The Structural Hot-Spot Stress Approach to Fatigue Analysis .. 5
 2.1 Field of Application 5
 2.2 Types of Hot Spot 6
 2.3 Definition of the Structural Stress at a Type “a” Hot-Spot 7
 2.4 Use of Stress Concentration Factors 9
 2.4.1 Modified Nominal Stress 9
 2.4.2 Structural Stress Concentration Factors, K_s 9
 2.4.3 Stress Magnification Factor Due to Misalignment K_m... 10
 2.5 Effect of Component Size on the Fatigue Resistance 12
 References ... 12

3 Experimental Determination of the Structural Hot-Spot Stress .. 13
 3.1 General .. 13
 3.2 Type “a” Hot Spots 13
 3.3 Type “b” Hot Spots 15
 References ... 16

4 Structural Hot-Spot Stress Determination Using Finite Element Analysis ... 17
 4.1 General .. 17
 4.2 Choice of Element Type 18
 4.3 Methods for Determination of Structural Hot-Spot Stress 19
6.3.1 Structural Stress Approach According to Dong 43
6.3.2 Structural Stress Approach According to Xiao and Yamada 44
6.3.3 Structural Stress Approach According to Haibach 44
References 44

7 Case Study 1: Box Beam of a Railway Wagon 47
7.1 Introduction 47
7.2 Materials and Methods 47
7.2.1 Description of the Structure 47
7.2.2 Angular Misalignment in the Web 47
7.2.3 Strain Gauge Measurements 48
7.2.4 Structural Hot-Spot Stress Determination 49
7.2.5 S-N Curve 50
7.2.6 Partial Safety Factors 51
7.3 Results 51
7.3.1 Stress Concentration Factor, K_s 51
7.3.2 Results for a Perfectly Straight Web 51
7.3.3 Effective Magnification Factor, K_m 52
7.3.4 Results for a Web with Angular Misalignment 53
7.4 Discussion and Conclusions 53

8 Case Study 2: Hatch Corner Design for Container Ships 55
8.1 Introduction 55
8.2 Materials and Methods 55
8.2.1 Description of the Structure 55
8.2.2 Service Loads 55
8.2.3 Experimental Investigation 56
8.2.4 Structural Hot-Spot Stress Determination 57
8.2.5 S-N Curve Based on Nominal Stress 58
8.3 Fatigue Assessment 59
8.4 Conclusion 59
Reference 59

9 Case Study 3: Web Frame Corner 61
9.1 Introduction 61
9.2 Computation of the Structural Hot-Spot Stress 62
9.2.1 Finite Element Modelling 62
9.2.2 Computation of Structural Hot-Spot Stresses 63
9.3 Fatigue Tests 64
9.3.1 Performance of the Tests 64
9.3.2 Observed Fatigue Lives 64
9.3.3 Comparison with Design S-N Curves 65
Reference 66
10 Case Study 4: Loaded Stiffener on T-Bar

10.1 Introduction .. 67
10.2 Computation of the Structural Hot-Spot Stress 67
 10.2.1 Finite Element Modelling 67
 10.2.2 Determination of the Structural Hot-Spot Stress
 by Extrapolation 69
 10.2.3 Determination of the Structural Stress According
 to Dong ... 70
 10.2.4 Determination of the Structural Stress According
 to Xiao/Yamada 72
10.3 Estimation of the Design Fatigue Life 72
 10.3.1 Fatigue Life Determined from Extrapolated Stress ... 72
 10.3.2 Fatigue Life Determined from Dong’s Approach 72
 10.3.3 Fatigue Life Determined from Xiao/Yamada’s
 Approach .. 73
 10.3.4 Comparison with Test Results 73
References ... 73

Appendix ... 75
Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components
Designer's Guide
Niemi, E.; Fricke, W.; Maddox, S.J.
2018, XIII, 76 p. 38 illus., 17 illus. in color., Hardcover
ISBN: 978-981-10-5567-6