Contents

1 Product Design as Integration of Axiomatic Design and Design Structure Matrix ... 1
 1.1 Introduction and Synopsis .. 1
 1.2 Axiomatic Design Versus Design Structure Matrix 2
 1.2.1 Advantages and Disadvantages of Axiomatic Design ... 2
 1.2.2 Advantages and Disadvantages of Design Structure Matrix ... 4
 1.2.3 The Benefit of Combining Axiomatic Design and Design Structure Matrix ... 5
 1.3 The Theory of Axiomatic Design and Design Structure Matrix Integration ... 6
 1.3.1 Formulation of Related Predicates 6
 1.3.2 Recursive Interaction of DM and DSM 9
 1.4 System Development and Application 13
 1.4.1 System Development ... 13
 1.4.2 Application of Integration Between AD and DSM 15
 1.5 Conclusion .. 19
 References .. 20

2 Product Design Knowledge Management Based on Design Structure Matrix ... 21
 2.1 Introduction and Synopsis ... 21
 2.2 Related Research of Knowledge Management 22
 2.3 KM Lifecycle Framework Based on DSM 23
 2.4 Knowledge Acquisition .. 25
 2.4.1 Direct Knowledge Capture from DSMs 25
 2.4.2 Indirect Knowledge Capture 29
 2.5 Knowledge Organization and Application 30
 2.6 Conclusion .. 33
 References .. 33
3 Matrix-Based Conceptual Solution Generation Approach of Multifunction Product

3.1 Introduction and Synopsis

3.2 Related Research of Multifunction Product Design

3.3 Function Model

3.3.1 Functional Basis

3.3.2 Construction of Function Model

3.4 Conceptual Solution Generation Approach (CSGA) of Multifunction Product

3.4.1 Function Analysis

3.4.2 Functional Similarity Analysis

3.4.3 Component Correlation Analysis

3.5 Application of CSGA for Multifunction Product

3.5.1 Function Analysis

3.5.2 Functional Similarity Analysis

3.5.3 Component Correlation Analysis

3.6 Results and Discussion

3.7 Conclusion

References

4 Matrix-Based Computational Concept Design with Ant Colony Optimization

4.1 Introduction and Synopsis

4.2 Related Research of Product Conceptual Design

4.3 Tools Used in Matrix-Based Conceptual Generation

4.3.1 Functional Basis of Design

4.3.2 Function–Component Repository

4.3.3 Ant Colony Optimization

4.4 Matrix-Based Concept Generation Method (MCGM)

4.4.1 Function Decomposition and Generation of Sub-function Chain

4.4.2 Generation of FCM

4.4.3 Generation of Initial Solution Matrix

4.4.4 Definition of Component–Component Matrix

4.4.5 Filtration of Initial Conceptual Solution

4.4.6 Definition of Evaluation Criteria and Weighting

4.4.7 Optimization of Design Solution with ACO

4.5 Application of MCGM for Product Design

4.6 Conclusion and Future Work

References
Workload-Based Change Propagation Analysis

in Product Design

5.1 Introduction and Synopsis

5.2 Related Research of Engineering Change

5.3 Outline of the Method

5.4 Searching Change Propagation Paths

5.4.1 Mapping from Change Requirements to Product Components

5.4.2 Relationships Between Product Components

5.4.3 Change Propagation Pattern

5.4.4 Searching Change Propagation Paths

5.5 Workload-Based Analysis of Change Propagation

5.5.1 Workload Transformation Within a Change Propagation Step

5.5.2 Workload for a Change Propagation Path

5.5.3 Change Propagation Analysis and Recommendation

5.6 Application of the Method for Product Design

5.6.1 Modeling Process

5.6.2 Searching Change Propagation Paths

5.6.3 Workload-Based Analysis of Change Propagation

5.7 Initial Evaluation

5.8 Discussion

5.9 Conclusion and Future Work

References

Matrix-Based Engineering Change Management of Product Design Using MBD Technique

6.1 Introduction and Synopsis

6.2 Design Change-Oriented MBD Model

6.3 Change Acquisition in Terms of Product Parameter

6.3.1 Type of Parameter

6.3.2 Parameter Change Acquisition

6.4 Change Acquisition in Terms of Product Assembly

6.4.1 Topological Decomposition of Part

6.4.2 Topology Face Change Acquisition

6.5 Relation Model for MBD-Based Change Propagation Analysis

6.5.1 Parameter Relation

6.5.2 Topology Face Relation

6.6 Change Propagation Analysis

6.6.1 Type of Change Propagation

6.6.2 Change Propagation Pattern

6.6.3 Design Change Process

6.7 Application of MBD-Based Change Management

References
7 Matrix-Based Change Prediction and Analysis Method Considering Multiple Change Requirements

7.1 Introduction and Synopsis .. 145
7.2 Related Literature .. 147
 7.2.1 Change Propagation Mechanism in Product Structure ... 148
 7.2.2 Engineering Change Requirement and Its Role 149
 7.2.3 Research Motivation 150
7.3 Multiple Change Requirements Model 150
 7.3.1 Assumptions .. 150
 7.3.2 Description of the Proposed Model 151
 7.3.3 Change Propagation Pattern Based on Logic Relationship Between Components 152
7.4 Change Risk Propagation and Assessment 153
 7.4.1 Change Propagation Mathematical Model for Multiple Change Requirements 153
 7.4.2 Illustration of the Proposed Mathematical Model 157
7.5 Cost-Effective CPPs Taking MCRs into Consideration 163
7.6 Application of MRC-Algorithm 166
 7.6.1 Change Requirement Scenario 169
7.7 Conclusion and Future Work 176
References .. 182

8 Product-Oriented Change Propagation and Prediction Approach in Product Family Design ... 185
8.1 Introduction and Synopsis 185
8.2 Engineering Change in Product Family Design 187
8.3 State-of-the-Art Approach 189
 8.3.1 Change Propagation Mechanism in Product Family 189
 8.3.2 Change Propagation Pattern and Mathematical Model .. 192
8.4 Advanced Algorithm for Change Prediction in Product Family 192
8.5 Case Study .. 194
 8.5.1 Change Propagation Analysis in a Business Kettle 195
 8.5.2 Change Propagation Analysis in an Office Kettle 199
 8.5.3 Change Propagation Analysis in a Home Kettle 200
 8.5.4 Change Propagation Analysis in a Product Family Design of Electric Kettle 204
8.6 Conclusion and Future Work 206
References .. 207
Matrix-based Product Design and Change Management
Tang, D.; Yin, L.; Ullah, I.
2018, VIII, 208 p. 133 illus., 99 illus. in color., Hardcover
ISBN: 978-981-10-5076-3