Contents

1 **Introduction to Soft Matter in Brief** ... 1
References. ... 4

2 **Discovery of Soft-Matter Quasicrystals and Their Properties** 5
2.1 Soft-Matter Quasicrystals with 12- and 18-Fold Symmetries 5
2.2 Characters of Soft-Matter Quasicrystals .. 8
2.3 Some Concepts Concerning Possible Hydrodynamics on Soft-Matter Quasicrystals ... 9
2.4 First and Second Kinds of Two-Dimensional Quasicrystals 9
2.5 Motivation of Our Discussion in the Book 11
References. ... 11

3 **Review in Brief on Elasticity and Hydrodynamics of Solid Quasicrystals** ... 13
3.1 Physical Basis of Elasticity of Quasicrystals, Phonons and Phasons 13
3.2 Deformation Tensors .. 16
3.3 Stress Tensors and Equations of Motion .. 17
3.4 Free Energy Density and Elastic Constants 19
3.5 Generalized Hooke’s Law ... 21
3.6 Boundary Conditions and Initial Conditions 22
3.7 Solutions of Elasticity .. 23
3.8 Generalized Hydrodynamics of Solid Quasicrystals 23
3.8.1 Viscosity of Solid .. 24
3.8.2 Generalized Hydrodynamics of Solid Quasicrystals 25
3.9 Solution of Generalized Hydrodynamics of Solid Quasicrystals 26
3.10 Conclusion and Discussion ... 27
References. ... 27
4 Equation of State of Some Structured Fluids 31
4.1 Overview on Equation of State in Some Fluids 31
4.2 Possible Equations of State ... 33
4.3 Applications to Hydrodynamics of Soft-Matter
Quasicrystals .. 33
References .. 34

5 Poisson Brackets and Derivation of Equations of Motion
of Soft-Matter Quasicrystals ... 35
5.1 Brown Motion and Langevin Equation 35
5.2 Extended Version of Langevin Equation 35
5.3 Multivariable Langevin Equation, Coarse Graining 36
5.4 Poisson Bracket Method in Condensed Matter Physics 37
5.5 Application to Quasicrystals .. 39
5.6 Equations of Motion of Soft-Matter Quasicrystals 39
5.6.1 Generalized Langevin Equation 40
5.6.2 Derivation of Hydrodynamic Equations of
Soft-Matter Quasicrystals ... 40
5.7 Poisson Brackets Based on Lie Algebra 44
References .. 48

6 Oseen Flow and Generalized Oseen Flow 51
6.1 Navier–Stokes Equations ... 51
6.2 Stokes Approximation ... 52
6.3 Stokes Paradox .. 52
6.4 Oseen Modification .. 52
6.5 Oseen Steady Solution of Flow of Incompressible Fluid Past
Cylinder .. 53
6.6 Generalized Oseen Flow of Compressible Viscous Fluid Past a
Circular Cylinder .. 60
6.6.1 Introduction .. 60
6.6.2 Basic Equations ... 60
6.6.3 Flow Past a Circular Cylinder 61
6.6.4 Quasi-Steady Analysis—Numerical Solution 62
6.6.5 Conclusion and Discussion 66
References .. 67

7 Dynamics of Soft-Matter Quasicrystals with 12-Fold Symmetry 69
7.1 Two-Dimensional Governing Equations of Soft-Matter
Quasicrystals of 12-Fold Symmetry 69
7.2 Simplification of Governing Equations 73
7.2.1 Steady Dynamic Problem of Soft-Matter
Quasicrystals with 12-Fold Symmetry 73
7.2.2 Pure Fluid Dynamics .. 74
7.3 Dislocation and Solution ... 74
7.4 Generalized Oseen Approximation Under Condition of Lower Reynolds Number 76
7.5 Steady Dynamic Equations Under Oseen Modification in Polar Coordinate System 77
7.6 Flow Past a Circular Cylinder. 79
 7.6.1 Two-Dimensional Flow Past Obstacle, Stokes Paradox 79
 7.6.2 Statement on the Problem 79
 7.6.3 A Flow Past a Cylinder 80
 7.6.4 Quasi-Steady Analysis—Numerical Solution by Finite Difference Method 80
 7.6.5 Numerical Results and Analysis 81
7.7 Three-Dimensional Equations of Generalized Dynamics of Soft-Matter Quasicrystals with 12-Fold Symmetry 88
7.8 Possible Crack Problem and Analysis 90
7.9 Conclusion and Discussion 93
References .. 94

8 Dynamics of Possible Five and Tenfold Symmetrical Soft-Matter Quasicrystals .. 97
 8.1 Statement on Possible Soft-Matter Quasicrystals of Five and Tenfold Symmetries 97
 8.2 Two-Dimensional Basic Equations of Soft-Matter Quasicrystals of Point Groups 5, 5 and 10, T. 97
 8.3 Dislocations and Solutions 100
 8.4 Probe on Modification of Dislocation Solution by Considering Fluid Effect ... 102
 8.5 Transient Dynamic Analysis 104
 8.5.1 Specimen and Initial-Boundary Conditions 104
 8.5.2 Numerical Analysis and Results 105
 8.6 Three-Dimensional Equations of Point Group 10 mm Soft-Matter Quasicrystals 110
 8.7 Conclusion and Discussion 113
References .. 114

9 Dynamics of Possible Soft-Matter Quasicrystals of Eightfold Symmetry ... 115
 9.1 Basic Equations of Possible Soft-Matter Eightfold Symmetrical Quasicrystals 115
 9.2 Dislocation in Quasicrystals with Eightfold Symmetry 117
 9.2.1 Elastic Static Solution 117
 9.2.2 Modification Considering Fluid Effect 119
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Transient Dynamics Analysis</td>
<td>119</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Specimen</td>
<td>119</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Computational Results</td>
<td>120</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Analysis of Results</td>
<td>120</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Some Discussions</td>
<td>127</td>
</tr>
<tr>
<td>9.4</td>
<td>Flow Past a Circular Cylinder</td>
<td>127</td>
</tr>
<tr>
<td>9.5</td>
<td>Three-Dimensional Soft-Matter Quasicrystals with Eightfold Symmetry</td>
<td>130</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusion and Discussion</td>
<td>132</td>
</tr>
<tr>
<td>References</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dynamics of Soft-Matter Quasicrystals with 18-Fold Symmetry</td>
<td>135</td>
</tr>
<tr>
<td>10.1</td>
<td>Six-Dimensional Embedded Space</td>
<td>135</td>
</tr>
<tr>
<td>10.2</td>
<td>Elasticity of Possible Solid Quasicrystals with 18-Fold Symmetry</td>
<td>136</td>
</tr>
<tr>
<td>10.3</td>
<td>Dynamics of Quasicrystals of 18-Fold Symmetry with Point Group 18 mm</td>
<td>138</td>
</tr>
<tr>
<td>10.4</td>
<td>The Steady Dynamic and Static Case of First and Second Phason Fields</td>
<td>142</td>
</tr>
<tr>
<td>10.5</td>
<td>Dislocations and Solutions</td>
<td>144</td>
</tr>
<tr>
<td>10.5.1</td>
<td>The Zero-Order Approximate Solution of Dislocations of Soft-Matter Quasicrystals with 18-Fold Symmetry</td>
<td>144</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Modification to the Solution (10.5.3)–(10.5.6) Considering Fluid Effect</td>
<td>147</td>
</tr>
<tr>
<td>10.6</td>
<td>Discussion on Transient Dynamics Analysis</td>
<td>147</td>
</tr>
<tr>
<td>10.7</td>
<td>Other Solutions</td>
<td>149</td>
</tr>
<tr>
<td>References</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>The Possible 7-, 9- and 14-Fold Symmetry Quasicrystals in Soft Matter</td>
<td>151</td>
</tr>
<tr>
<td>11.1</td>
<td>The Possible Sevenfold Symmetry Quasicrystals with Point Group 7m of Soft Matter and the Dynamic Theory</td>
<td>151</td>
</tr>
<tr>
<td>11.2</td>
<td>The Possible Ninefold Symmetrical Quasicrystals with Point Group 9m of Soft Matter and Their Dynamics</td>
<td>154</td>
</tr>
<tr>
<td>11.3</td>
<td>Dislocation Solutions of the Possible Ninefold Symmetrical Quasicrystals of Soft Matter</td>
<td>157</td>
</tr>
<tr>
<td>11.4</td>
<td>The Possible 14-Fold Symmetrical Quasicrystals with Point Group 14mm of Soft Matter and Their Dynamics</td>
<td>161</td>
</tr>
<tr>
<td>11.5</td>
<td>The Solutions and Possible Solutions of Statics and Dynamics of 7- and 14-Fold Symmetrical Quasicrystals of Soft Matter</td>
<td>163</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusion and Discussion</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>164</td>
<td></td>
</tr>
</tbody>
</table>
12 An Application of Analytic Methods to Smectic A Liquid Crystals, Dislocation and Crack

12.1 Basic Equations ... 165
12.2 The Kleman–Pershan Solution of Screw Dislocation 167
12.3 Common Fundamentals of Discussion 168
12.4 The Simplest and Most Direct Solving Way and Additional Boundary Condition .. 168
12.5 Mathematical Mistakes of the Classical Solution 170
12.6 The Physical Mistakes of the Classical Solution 171
12.7 Meaning of the Present Solution 172
12.8 Solution of Plastic Crack 173
References .. 176

13 Conclusion Remarks ... 179

Index .. 181
Generalized Dynamics of Soft-Matter Quasicrystals
Mathematical models and solutions
Fan, T.-Y.
2017, XVI, 184 p. 54 illus., 45 illus. in color., Hardcover
ISBN: 978-981-10-4949-1