Contents

Part I Why a Theory of Electronic States in Crystals of Finite Size Is Needed

1 **Introduction** 3
 1.1 Electronic States Based on the Translational Invariance 4
 1.2 Energy Band Structure of Several Typical Crystals 6
 1.3 Fundamental Difficulties of the Theory of Electronic States in
 Conventional Solid-State Physics 7
 1.4 The Effective Mass Approximation 9
 1.5 Some Numerical Results 11
 1.6 Subject of the Book and Main Findings 13
 References .. 17

Part II One-Dimensional Semi-infinite Crystals and Finite Crystals

2 **The Periodic Sturm–Liouville Equations** 21
 2.1 Elementary Theory and Two Basic Sturm Theorems 22
 2.2 The Floquet Theory 27
 2.3 Discriminant and Linearly Independent Solutions 31
 2.4 The Spectral Theory 33
 2.4.1 Two Eigenvalue Problems 34
 2.4.2 The Function D(\lambda) 35
 2.5 Band Structure of Eigenvalues 40
 2.6 Zeros of Solutions 44
 References .. 49

3 **Surface States in One-Dimensional Semi-infinite Crystals** 51
 3.1 Basic Considerations 52
 3.2 Two Qualitative Relations 54
 3.3 Surface States in Ideal Semi-infinite Crystals 56
 3.4 Cases Where V_{out} Is Finite 59
4 Electronic States in Ideal One-Dimensional Crystals of Finite Length ... 67
4.1 Basic Considerations 67
4.2 Two Types of Electronic States 69
4.3 \(\tau\)-Dependent States 75
4.4 Stationary Bloch States 78
4.5 Electronic States in One-Dimensional Finite Symmetric Crystals .. 78
4.6 Comments on the Effective Mass Approximation 80
4.7 Comments on the Surface States 82
4.8 Two Other Comments 85
 4.8.1 A Comment on the Formation of the Energy Bands 85
 4.8.2 A Comment on the Boundary Locations 86
4.9 Summary ... 86
References .. 87

Part III Low-Dimensional Systems and Finite Crystals

5 Electronic States in Ideal Quantum Films 91
5.1 A Basic Theorem 93
5.2 Consequences of the Theorem 97
5.3 Basic Considerations on the Electronic States in an Ideal Quantum Film .. 99
5.4 Stationary Bloch States 99
 5.4.1 The Simplest Cases 100
 5.4.2 More General Cases 101
5.5 \(\tau_3\)-Dependent States 103
5.6 Several Practically More Interesting Films 105
 5.6.1 (001) Films with an fcc Bravais Lattice 105
 5.6.2 (110) Films with an fcc Bravais Lattice 106
 5.6.3 (001) Films with a bcc Bravais Lattice 107
 5.6.4 (110) Films with a bcc Bravais Lattice 108
5.7 Comparisons with Previous Numerical Results 108
 5.7.1 Si (001) Films 108
 5.7.2 Si (110) Films and GaAs (110) Films 110
5.8 Further Discussions 113
References .. 118

6 Electronic States in Ideal Quantum Wires 119
6.1 Basic Considerations 120
6.2 Further Quantum Confinement of \(\psi_n(\mathbf{k}, \mathbf{x}; \tau_3)\) 121
6.3 Further Quantum Confinement of $\psi_{n, j_3}(\hat{k}, x; \tau_3)$ 125
6.4 Quantum Wires of Crystals with a sc, tetr, or ortho Bravais Lattice 130
6.5 fcc Quantum Wires with (110) and (001) Surfaces 132
 6.5.1 fcc Quantum Wires Obtained from (001) Films Further Confined by Two (110) Surfaces 132
 6.5.2 fcc Quantum Wires Obtained from (110) Films Further Confined by Two (001) Surfaces 134
 6.5.3 Results Obtained by Combining Sects. 6.5.1 and 6.5.2.......................... 137
6.6 fcc Quantum Wires with (110) and (110) Surfaces 139
6.7 bcc Quantum Wires with (001) and (010) Surfaces 141
6.8 Summary and Discussions .. 142
References ... 144

7 Electronic States in Ideal Finite Crystals or Quantum Dots 145
 7.1 Basic Considerations .. 146
 7.2 Further Quantum Confinement of $\psi_n(\hat{k}, x; \tau_2, \tau_3)$ 146
 7.3 Further Quantum Confinement of $\psi_{n, j_3}(\hat{k}, x; \tau_2, \tau_3)$ 150
 7.4 Further Quantum Confinement of $\psi_{n, j_2}(\hat{k}, x; \tau_2, \tau_3)$ 153
 7.5 Further Quantum Confinement of $\psi_{n, j_2, j_3}(\hat{k}, x; \tau_2, \tau_3)$ 156
 7.6 Finite Crystals or Quantum Dots with a sc, tetr, or ortho Bravais Lattice .. 160
 7.7 fcc Finite Crystals with (001), (110), and (\(1\over 2\)10) Surfaces 162
 7.8 bcc Finite Crystals with (100), (010), and (001) Surfaces 165
 7.9 Summary and Discussions .. 168
References ... 173

Part IV Epilogue

8 Concluding Remarks .. 177
 8.1 Summary and Brief Discussions .. 177
 8.2 Some Relevant Systems .. 183
 8.2.1 Other Finite Periodic Systems .. 183
 8.2.2 Electronic States in Ideal Cavity Structures 185
 8.3 Could a More General Theory Be Possible? 185
References ... 187

Appendix A: The Kronig–Penney Model .. 189
Appendix B: Electronic States in One-Dimensional Symmetric Finite Crystals with a Finite V_{out} 211
Appendix C: Layered Crystals .. 217
Appendix D: Analytical Expressions of $\frac{\partial A}{\partial t}$ and $\frac{\partial A}{\partial \sigma}$ 225
Appendix E: One-Dimensional Phononic Crystals 231
Appendix F: One-Dimensional Photonic Crystals 247
Appendix G: Electronic States in Ideal Cavity Structures 269
Index ... 281
Electronic States in Crystals of Finite Size
Quantum Confinement of Bloch Waves
Ren, S.Y.
2017, XVI, 283 p. 42 illus., Hardcover