Contents

1 Introduction .. 1
 1.1 Background ... 2
 1.1.1 Space Radiation Environment and Radiation Effect 2
 1.1.2 Development and Application of SiGe HBT Technology ... 5
 1.2 Radiation Effect and Compact Model of SiGe HBT 7
 1.2.1 Radiation Effect of SiGe HBT 7
 1.2.2 Compact Model of SiGe HBT 12
 1.3 Research Work in This Dissertation 14
References ... 16

2 Ionization Damage Effect in SiGe HBT 25
 2.1 Interaction Mechanism Between Gamma Rays and Materials ... 25
 2.2 Experiment .. 26
 2.3 Results and Discussion 28
 2.3.1 SiGe HBT1 with Emitter and Substrate Connecting Together ... 28
 2.3.2 Ionization Damage in SiGe HBTs with Backside Collector Electrode ... 34
 2.3.3 Degradation Mechanism in Gamma Ray Irradiated SiGe HBTs ... 38
 2.4 Ionization Damage in SiGe HBT at Different Dose Rate 42
 2.4.1 Results of Ionization Damage at Different Dose Rate 43
 2.4.2 Mechanism of Enhanced Low-Dose-Rate Sensitivity 45
 2.5 Bias Dependence of Ionization Damage in SiGe HBT 48
 2.5.1 Irradiation Under High-Dose Rate 49
 2.5.2 Irradiation Under High-Dose Rate 51
 2.6 Conclusion ... 54
References ... 55
Research on the Radiation Effects and Compact Model of SiGe HBT
Sun, Y.
2018, XXIV, 168 p. 171 illus., Hardcover
ISBN: 978-981-10-4611-7