Contents

1 Introduction ... 1
 1.1 Background ... 2
 1.1.1 Space Radiation Environment and Radiation Effect 2
 1.1.2 Development and Application of SiGe HBT Technology .. 5
 1.2 Radiation Effect and Compact Model of SiGe HBT 7
 1.2.1 Radiation Effect of SiGe HBT 7
 1.2.2 Compact Model of SiGe HBT 12
 1.3 Research Work in This Dissertation 14
References ... 16

2 Ionization Damage Effect in SiGe HBT 25
 2.1 Interaction Mechanism Between Gamma Rays and Materials 25
 2.2 Experiment ... 26
 2.3 Results and Discussion .. 28
 2.3.1 SiGe HBT1 with Emitter and Substrate Connecting Together ... 28
 2.3.2 Ionization Damage in SiGe HBTs with Backside Collector Electrode ... 34
 2.3.3 Degradation Mechanism in Gamma Ray Irradiated SiGe HBTs .. 38
 2.4 Ionization Damage in SiGe HBT at Different Dose Rate 42
 2.4.1 Results of Ionization Damage at Different Dose Rate 43
 2.4.2 Mechanism of Enhanced Low-Dose-Rate Sensitivity 45
 2.5 Bias Dependence of Ionization Damage in SiGe HBT 48
 2.5.1 Irradiation Under High-Dose Rate 49
 2.5.2 Irradiation Under High-Dose Rate 51
 2.6 Conclusion ... 54
References ... 55
3 Displacement Effects in SiGe HBT

3.1 Interaction Mechanism Between Swift Heavy Ion and Materials .. 57
3.2 Experiment ... 58
3.3 Irradiation Effects of 25 MeV Silicon Ions
 3.3.1 Sige HBT1 with Emitter and Substrate Connecting Together 60
 3.3.2 Performance Degradation of SiGe HBT2 63
 3.3.3 Physical Mechanism Analysis for Heavy Ion Radiation .. 67
3.4 Degradation Difference for Forward and Reverse Current Gain ... 73
 3.4.1 Experimental Result 73
 3.4.2 Mechanism Analysis and Discussion 77
3.5 Comparison of Different Heavy Ion Radiation 80
 3.5.1 Experimental Samples and Methods 80
 3.5.2 Experimental Results Analysis and Discussion 81
3.6 Effect of Bias Conditions 88
3.7 Conclusion ... 90
References ... 91

4 Single Event Transients in SiGe HBT

4.1 Mechanism of Single Event Effects ... 93
4.2 Experiment ... 94
4.3 Results and Discussion ... 96
 4.3.1 Effects of Laser Energy 96
 4.3.2 Effects of Load Resistance 100
 4.3.3 Effects of Bias Condition 102
4.4 Simulation of Single Event Transient in SiGe HBT 107
 4.4.1 Electric Potential and Electric Field 109
 4.4.2 Location Sensitivity Analysis of Single Event Transient .. 112
4.5 Conclusion ... 115
References ... 115

5 Small-Signal Equivalent Circuit for SiGe HBT Based on Distributed Network

5.1 Significance of SiGe HBT Distributed Equivalent Circuit 117
5.2 Establishment of Small-Signal Model ... 118
 5.2.1 Link Base Region (Region I) 119
 5.2.2 Intrinsic Transistor (Region II) 123
 5.2.3 Extrinsic Base Region (Region III) 127
 5.2.4 Equivalent Circuit for the Whole Transistor 128
5.3 Approximation and Simplification of Proposed Model 128
Research on the Radiation Effects and Compact Model of SiGe HBT

Sun, Y.

2018, XXIV, 168 p. 171 illus., Hardcover
ISBN: 978-981-10-4611-7