
Chapter 2
Starting from the Dirac Equation

Abstract The Dirac equation is the key to understanding topological insulators
and superconductors. A quadratic correction to the equation makes it topologically
distinct. The solution of the bound states near the boundary reflects the topology of
the system’s band structure.

2.1 Dirac Equation

In 1928, Paul A.M. Dirac wrote an equation for a relativistic quantum mechanical
wave function that describes an elementary spin- 12 particle [1, 2],

H = cp · α + mc2β, (2.1)

where m is the rest mass of a particle and c is the speed of light. αi and β are known
as the Dirac matrices that satisfy the relations

α2
i = β2 = 1, (2.2)

αiα j = −α jαi , (2.3)

αiβ = −βαi . (2.4)

Here ai and β are not simple complex numbers. The anticommutation relation means
that they can obey a Clifford algebra and must be expressed in a matrix form. In
one- and two-dimensional spatial space, they are at least 2 × 2 matrices. The Pauli
matrices σi (i = x, y, z) satisfy all these relations,

{σi ,σ j } = 2δi j , (2.5)
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where

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
. (2.6)

Thus, in one dimension, the two Dirac matrices αx and β are any two of the three
Pauli matrices, for example,

αx = σx ,β = σz . (2.7)

In two dimensions, the three Dirac matrices are the Pauli matrices,

αx = σx ,αy = σy,β = σz . (2.8)

In three dimensions, we cannot find more than three 2 × 2 matrices that satisfy the
anticommutation relations. Thus, the four Dirac matrices are at least 4-dimensional,
and can be expressed in terms of the Pauli matrices

αi =
(

0 σi

σi 0

)
≡ σx ⊗ σi , (2.9)

β =
(

σ0 0
0 −σ0

)
≡ σz ⊗ σ0, (2.10)

where σ0 is a 2 × 2 identity matrix.
From this equation, the relativistic energy-momentum relation will be automati-

cally the solution of the following equation:

E2 = m2c4 + p2c2. (2.11)

In three dimensions, there are two solutions for positive energy E+ and two solutions
for negative energy E−,

E± = ±
√
m2c4 + p2c2. (2.12)

This equation can be used to describe the motion of an electron with spin: the two
solutions of the positive energy correspond the two states of an electron, spin-up and
down, and the two solutions of the negative energy correspond to the two states of
an positron with spin-up and down. The energy gap between these two particles is
2mc2(≈1.0MeV).

This equation requires the existence of an antiparticle, i.e., a particle with nega-
tive energy or mass, and predates the discovery of positrons, the antiparticles of an
electron. It is one of the main achievements of modern theoretical physics. Dirac
proposed that the negative energy states are fully filled, and the Pauli exclusion prin-
ciple prevents a particle transiting into these occupied states. The normal state of
the vacuum then consists of an infinite density of negative energy states. The state
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of a single electron means that all the states of negative energies are filled, and only
one state of positive energy is filled. It is assumed that any deviation from the norm
produced by employing one or more of the negative energy states can be observed.
The absence of a negative charged electron that has a negative mass and kinetic
energy would then manifest itself as a positively charged particle that has an equal
positive mass and positive energy. In this way, a hole or positron can be formulated.
Unlike the Schrödinger equation for a single particle, the Dirac theory, in principle,
is a many-body theory. This has been discussed in many textbooks on relativistic
quantum mechanics [2].

Under the transformation of massm → −m, it is found that the equation remains
invariant if we replace β → −β, which satisfies all of the mutual anticommutation
relations for αi and β in (2.4). This reflects the symmetry between the positive and
negative energy particles in the Dirac equation: there is no topological distinction
between particles with positive and negative masses.

2.2 Solutions of Bound States

2.2.1 Jackiw-Rebbi Solution in One Dimension

A possible relation between the Dirac equation and the topological insulator is
revealed by a solution of the bound state at the interface between the regions of
positive and negative masses. We start with

h(x) = −iv�∂xσx + m(x)v2σz (2.13)

and

m(x) =
{−m1 if x < 0

+m2 otherwise
(2.14)

(and m1 and m2 > 0). We use an effective velocity v to replace the speed of light c
when the Dirac equation is applied to solids. The eigenvalue equation has the form

(
m(x)v2 −iv�∂x

−iv�∂x −m(x)v2

) (
ϕ1(x)
ϕ2(x)

)
= E

(
ϕ1(x)
ϕ2(x)

)
. (2.15)

For either x < 0 or x > 0, the equation is a second-order ordinary differential equa-
tion. We can solve the equation at x < 0 and x > 0 separately. The solution of the
wave function should be continuous at x = 0. In order to have a solution of a bound
state near the junction, we take the Dirichlet boundary condition that the wave func-
tion must vanish at x = ±∞. For x > 0, we set the trial wave function as
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(
ϕ1(x)
ϕ2(x)

)
=

(
ϕ+
1

ϕ+
2

)
e−λ+x . (2.16)

Then the secular equation gives

det

(
m2v

2 − E iv�λ+
iv�λ+ −m2v

2 − E

)
= 0. (2.17)

The solution to this equation is λ+ = ±
√
m2

2v
4 − E2/v�.

The solutions λ can be either real or purely imaginary. For m2
2v

4 < E2 the solu-
tions are purely imaginary, and the corresponding wave functions spread over the
whole space. These are the extended states or the bulk states, which we are not inter-
ested in here. For m2

2v
4 > E2 the solutions are real, and we choose a positive λ+

to satisfy the boundary condition at x → +∞. The two components in the wave
function satisfy

ϕ+
1 = − iv�λ+

m2v2 − E
ϕ+
2 . (2.18)

Similarly, for x < 0, we have

(
ϕ1(x)
ϕ2(x)

)
=

(
ϕ−
1

ϕ−
2

)
e+λ−x (2.19)

with λ− =
√
m2

1v
4 − E2/v�, and

ϕ−
1 = − iv�λ−

m1v2 + E
ϕ−
2 . (2.20)

At x = 0, the continuity condition for the wave function requires

(
ϕ+
1

ϕ+
2

)
=

(
ϕ−
1

ϕ−
2

)
. (2.21)

From this equation, it follows that

−
√
m2

2v
4 − E2

m2v2 − E
=

√
m2

1v
4 − E2

−m1v2 − E
. (2.22)

Thus, there exists a solution of zero energy, E = 0, and the corresponding wave
function is

Ψ (x) =
√

v

�

m1m2

m1 + m2

(
i
1

)
e−|m(x)vx |/�. (2.23)
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Fig. 2.1 Probability density
|Ψ (x)|2 of the solution as a
function of its position in
(2.23)

The solution is dominantly distributed near the interface or domain wall at x = 0 and
decays exponentially away from the point x = 0 as shown in Fig. 2.1. The solution
of m1 = m2 was first obtained by Jackiw and Rebbi, and is the mathematical basis
for the existence of topological excitations or solitons in one-dimensional systems
[3]. The spatial distribution of the wave function are determined by the characteristic
scales ξ1,2 = λ−1

± = �/
∣∣m1,2v

∣∣ . The solution exists even when m2 → +∞. In this
case, Ψ (x) → 0 for x > 0. However, we have to point out that the wave function is
not continuous at the interface, x = 0. If we regard the vacuum as a system with an
infinite positivemass, a systemwith a negativemasswith an open boundary condition
possesses a bound state near the boundary if the continuity condition is relaxed to
the wave function. This result leads to some popular impression of the formation of
the edge and surface states in topological insulators.

With regards to the stability of the zero mode solution, we may find a general
solution of zero energy for a distribution ofmassm(x) that changes from a negative to
positive mass at two ends. Consider the solution of E = 0 for (2.13). The eigenvalue
equation is reduced to

[−iv�∂xσx + m(x)v2σz
]
ϕ(x) = 0. (2.24)

Multiplying σx from the left hand side, one obtains

∂xϕ(x) = −m(x)v

�
σyϕ(x). (2.25)

Thus, the wave function should be the eigenstate of σy ,

σyϕη(x) = ηϕη(x) (2.26)
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with

ϕ± = 1√
2

(
1
±i

)
ϕ(x).

The wave function has the form

ϕη(x) ∝ 1√
2

(
1
ηi

)
exp

[
−

∫ x

η
m(x)v

�
dx ′

]
. (2.27)

For x → ±∞, ϕ(x) ∝ exp [− |m(±∞)vx | /�] , and the sign η is determined by the
signs of m(±∞). If m(+∞) and m(−∞) differ by a sign as a domain wall, there
always exists a zero energy solution near a domain wall of the mass distribution
m(x). Therefore this solution is quite robust against the mass distribution m(x).

2.2.2 Two Dimensions

In two dimensions (with pz = 0), we consider a system with an interface at x = 0,
m(x) = −m1 for x < 0, and m2 for x > 0. py = �ky is a good quantum number.
We have two solutions which the wave functions dominantly distribute around the
interface: one solution has the form

Ψ+(x, ky) =
√

v

h

m1m2

m1 + m2

⎛
⎜⎜⎝

i
0
0
1

⎞
⎟⎟⎠ e−|m(x)vx |/�+iky y (2.28)

with the dispersion εk,+ = v�ky and the other has the form

Ψ−(x, ky) =
√

v

h

m1m2

m1 + m2

⎛
⎜⎜⎝
0
i
1
0

⎞
⎟⎟⎠ e−|m(x)vx |/�+iky y (2.29)

with the dispersion εk,− = −v�ky . We can check these two solutions in the following
way. The Dirac equation can be divided into two parts,

H = [m(x)v2β + vpxαx ] + vpyαy . (2.30)

From the one-dimensional solution one has

(m(x)v2β + vpxαx )Ψ± = 0 (2.31)
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and

vpyαyΨ± = ±vpyΨ±. (2.32)

From the dispersions of the two states, the effective velocities of the electrons in the
states are

v± = ∂εk,±
�∂k

= ±v. (2.33)

Therefore, each state carries a current along the interface, but the electrons with
different spins move in opposite directions. The current density decays exponentially
away from the interface. As the system has the time reversal symmetry, the two
states are time reversal counterpart of each other, constituting a pair of helical edge
(or bound) states at the interface. Furthermore, the Dirac equation of pz = 0 can be
reduced to two independent sets of equations

h(x) = vpxσx ± vpyσy + m(x)v2σz (2.34)

for different spins. Thus, it is clear why two bound states have opposite velocities.

2.2.3 Three and Higher Dimensions

In three and higher dimensions, bound states always exist at the interface of the
system with positive and negative masses. Even when all other components of the
momentum in the interface are good quantum numbers, there is always a solution
for zero momentum, as in the one-dimensional case. We can use these solutions to
derive the ones of non-zero momenta in higher dimensions.

2.3 Why not the Dirac Equation?

From the Dirac equation, we know there is a solution of bound states at the interface
between twomediawith positive and negativemasses or energy gaps. These solutions
are quite robust against the roughness of the interface or other factors. If we assume
that the vacuum is an insulator with an infinitely large and positive mass or energy
gap, then the system with a negative mass should have bound states around the open
boundary only if the contiuity condition of the wave function is relaxed. This is very
close to the definition of topological insulators. However, because of the symmetry
in the Dirac equation with positive and negative masses, there is no topological
distinction between these two systems after a unitary transformation. We cannot
determine which one is topologically trivial or non-trivial simply from the sign of the



24 2 Starting from the Dirac Equation

mass or energy gap. If we use the Dirac equation to describe a topological insulating
phase, we have to introduce or assign an additional “vacuum” as a benchmark. Thus,
we think this additional condition is unnecessary as the existence of the bound state
should be a physical and intrinsic consequence of the band structure in topological
insulators. Therefore we conclude that the Dirac equation in (2.1) itself may not be
a “suitable” candidate to describe the topology of quantum matters.

2.4 Quadratic Correction to the Dirac Equation

To explore a possible description of a the topological insulator, we introduce a
quadratic correction −Bp2 in momentum p to the band gap or rest-mass term in
the Dirac equation [4],

H = vp · α + (
mv2 − Bp2

)
β, (2.35)

where mv2 is the band gap of the particle and m and v have dimensions of mass and
speed, respectively. B−1 also has the dimension of mass. The quadratic term breaks
the symmetry between the mass m and −m in the Dirac equation, and makes this
equation topologically distinct from the original Dirac equation in (2.1).

To illustrate this, we plot the spin distribution of the ground state in momentum
space as shown in Fig. 2.2. At p = 0, the spin orientation is determined by mv2β
or the sign of mass m, but for a large p, it is determined dominantly by −Bp2β
or the sign of B. If the dimensionless parameter mB > 0, when p increases along
one direction, say the x-direction, the spin will rotate from the z-direction to the
x-direction of p at p2c = mv2/B, and then eventually to the opposite z-direction for
a largerp. This consists of two so-calledmerons inmomentum space, which is named

Fig. 2.2 Spin orientation in momentum space. Left (mB < 0) the spins at p = 0 and p = +∞
are parallel, which is topologically trivial. Left bottom spin orientation along the px -axis. Right
(mB > 0) the spins at p = 0 and p = +∞ are anti-parallel, which is topologically non-trivial.
Right bottom spin orientation along the px -axis
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skymion. For mB < 0, when p increases, the spin will rotate from the z-direction
to the direction of p, and then flips back to the initial z-direction. The question of
whether the spin points in the same direction at p = 0 and +∞ determines whether
the equation is topologically distinct in the case of mB > 0 and mB < 0.

2.5 Bound State Solutions of the Modified Dirac Equation

2.5.1 One Dimension: End States

Let us start with a one-dimensional case. In this case, the 4 × 4 (2.35) can be decou-
pled into two independent sets of 2 × 2 equations,

h(x) = vpxσx + (
mv2 − Bp2x

)
σz . (2.36)

For a semi-infinite chain with x ≥ 0, we consider an open boundary condition at
x = 0. It is required that thewave function vanishes at the boundary, i.e., theDirichlet
boundary condition. Usually, we have a series of solutions of extended states, which
wave functions spread throughout the whole space. In this section, we focus on the
solution of the bound state near the boundary. To find the solution of zero energy, we
have [

vpxσx + (
mv2 − Bp2x

)
σz

]
ϕ(x) = 0. (2.37)

Multiplying σx from the left hand side, one obtains

∂xϕ(x) = − 1

v�

(
mv2 + B�

2∂2
x

)
σyϕ(x). (2.38)

If ϕ(x) is an eigen function of σy , take ϕ(x) = χηφ(x) with σyχη = ηχη (η = ±1).
Then, the differential equation is reduced to the second-order ordinary differential
equation,

∂xφ(x) = − η

v�

(
mv2 + B�

2∂2
x

)
φ(x). (2.39)

Taking the trial wave function φ(x) ∝ e−λx , one obtains the secular equation

B�
2λ2 − ηv�λ + mv2 = 0. (2.40)

The two roots satisfy the relation λ+ + λ− = ηv�/B and λ+λ− = mv2/B�
2. To

have a bound state solution, it is required that the wave function vanishes at x = 0
and x = +∞,

ϕ(x = 0) = ϕ(x = +∞) = 0. (2.41)
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Fig. 2.3 Schematic of the
probability density |Ψ (x)|2
of the end state solution as a
function of its position in
(2.42)

The two roots should be positive and only one of χη satisfy the boundary condition
for a bound state, η = sgn(B) (without loss of generality, we assume that v is always
positive). In the condition of mB > 0, there exists a solution of the bound state with
zero energy

ϕη(x) = C√
2

(
sgn(B)

i

)
(e−x/ξ+ − e−x/ξ−), (2.42)

where ξ−1
± = v

2|B|�
(
1 ± √

1 − 4mB
)
and C is the normalization constant. The main

feature of this solution is that the wave function distributes dominantly near the
boundary, and decays exponentially away from one end as shown in Fig. 2.3. The
two parameters ξ+ and ξ− decide the spatial distribution of the wave function. These
are two important length scales, which characterize the end states. When B → 0,
ξ+ → |B| �/v and ξ− = �/mv, i.e., ξ+ approaches to zero, and ξ− becomes a finite
constant that is determined by the energy gap mv2. If we relax the constraint of the
vanishing wave function at the boundary, the solution exists even if B = 0. In this
way, we go back to the conventional Dirac equation. In this sense, the two equations
reach the same conclusion. Whenm → 0, ξ− = �/mv → +∞ and the state evolves
into a bulk state. Thus, the end states disappear and a topological quantum phase
transition occurs at m = 0.

In the four-component form to (2.35), two degenerate solutions have the form,

Ψ1 = C√
2

⎛
⎜⎜⎝
sgn(B)

0
0
i

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−) (2.43)
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and

Ψ2 = C√
2

⎛
⎜⎜⎝

0
sgn(B)

i
0

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−). (2.44)

We shall see that these two solutions can be used to derive effective Hamiltonians
for higher dimensional systems.

The role of this solution cannot be underestimated in the theory of topological
insulators. We will see that all solutions of the edge or surface states, and topological
excitations are closely related to this solution.

2.5.2 Two Dimensions: Helical Edge States

In two dimensions, the equation can also be decoupled into two independent equa-
tions

h± = vpxσx ± vpyσy + (
mv2 − Bp2

)
σz . (2.45)

These two equations break the “time” reversal symmetry under the transformation
of σi → −σi and pi → −pi , although the original four-component equation is time
reversal invariant.

We consider a semi-infinite plane with the boundary at x = 0. py = �ky is a good
quantum number. At ky = 0, the two-dimensional equation has the identical form as
the one-dimensional equation. The x dependent part of the solution has the identical
form as in the one dimension. Thus, we use the two one-dimensional solutions
{Ψ1, Ψ2} in (2.43) and (2.44) as the basis of the two-dimensional solutions. The y
dependent part ΔH2D = vpyαy − Bp2yβ is regarded as the perturbation to the one-
dimensional Hamiltonian. In this way, we have a one-dimensional effective model
for the helical edge states

Hef f = (〈Ψ1| , 〈Ψ2|)ΔH

( |Ψ1〉
|Ψ2〉

)
= vpysgn(B)σz . (2.46)

The sign dependence of B in the effective model also reflects the fact that the helical
edge states disappear if B = 0. The dispersion relations for the bound states at the
boundary are

εpy ,± = ±vpy . (2.47)

Electrons have positive (+v) and negative velocity (−v) in their two different states,
respectively, and form a pair of helical edge states.
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The exact solutions of the edge states in this two-dimensional equation have the
form similar to that in the one-dimensional equation [5],

Ψ1 = C√
2

⎛
⎜⎜⎝
sgn(B)

0
0
i

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−)e+i py y/� (2.48)

and

Ψ2 = C√
2

⎛
⎜⎜⎝

0
sgn(B)

i
0

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−)e+i py y/�, (2.49)

with thedispersion relations εpy ,± = ±vpysgn(B). The characteristic lengths become
py dependent,

ξ−1
± = v

2 |B| �
(
1 ±

√
1 − 4mB + 4B2 p2y/v

2
)

. (2.50)

In two dimensions, the Chern number or Thouless-Kohmoto-Nightingale-Nijs
(TKNN) integer can be used to characterize whether the system is topologically
trivial or non-trivial [6]. For the two-band Hamiltonian in the form H = d(p) · σ,

the Chern number is expressed as

nc = − 1

4π

∫
dp

d · (∂pxd × ∂pyd)

d3
, (2.51)

whered2 = ∑
α=x,y,z d

2
α (seeAppendixA.2). The integral runs over the firstBrillouin

zone for a lattice system, in which the number nc is always an integer (see Appendix
A.1). In the continuous limit, the integral area becomes infinite, the integral can be
fractional. For (2.45), the Chern number has the form [7, 8]

n± = ±1

2
(sgn(m) + sgn(B)), (2.52)

which is related to the Hall conductance σ± = n±e2/h. When m and B have the
same sign, n± = ±1, and the system is topologically non-trivial. But if m and B
have different signs, n± = 0. The topologically non-trivial condition is in agreement
with the existence condition of the edge state solution mB > 0. This reflects the
bulk-edge relation of the integer quantum Hall effect [9].
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2.5.3 Three Dimensions: Surface States

In three dimensions, we consider a y–z plane at x = 0. We can derive an effective
model for the surface states by means of the one-dimensional solution of the bound
state. As the momenta among the y–z plane are good quantum numbers, we use
their eigenvalues to replace the momentum operators, py and pz . Consider py and
pz dependent part as a perturbation to H1D(x),

ΔH3D = vpyαy + vpzαz − B(p2y + p2z )β. (2.53)

The solutions of the three-dimensional Dirac equation at py = pz = 0 are identical to
the twoone-dimensional solutions, |Ψ1〉 and |Ψ2〉 in (2.43) and (2.44). For py, pz 
= 0,
we use the solutions

Ψ1 = C√
2

⎛
⎜⎜⎝
sgn(B)

0
0
i

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−)ei(py y+pz z)/� (2.54)

and

Ψ2 = C√
2

⎛
⎜⎜⎝

0
sgn(B)

i
0

⎞
⎟⎟⎠ (e−x/ξ+ − e−x/ξ−)ei(py y+pz z)/� (2.55)

as the basis. A straightforward calculation as in the two-dimensional case gives

Hef f = (〈Ψ1| , 〈Ψ2|)ΔH3D

( |Ψ1〉
|Ψ2〉

)
= vsgn(B)(p × σ)x . (2.56)

Under a unitary transformation,

Φ1 = 1√
2
(|Ψ1〉 − i |Ψ2〉) (2.57)

and

Φ2 = −i√
2
(|Ψ1〉 + i |Ψ2〉), (2.58)
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one can have a gapless Dirac equation for the surface states

Hef f = 1

2
(〈Φ1| , 〈Φ2|)ΔH3D

( |Φ1〉
|Φ2〉

)

= vsgn(B)(pyσy + pzσz). (2.59)

The dispersion relations become εp,± = ±vp with p =
√
p2y + p2z . In this way, we

have an effective model for a single Dirac cone of the surface states as plotted in Fig.
2.4. Note that σi in the Hamiltonian is not a real spin, which is determined by two
states at py = pz = 0. In some systems |Ψ1〉 and |Ψ2〉 are almost polarized along the
z-direction of the electron spin. In this sense, the Pauli matrices in (2.56) may be
regarded as approximating a real spin.

The exact solutions of the surface states of this three-dimensional equation with
a boundary are

Ψ± = CΨ 0
±(e−x/ξ+ − e−x/ξ−) exp[+i

(
py y + pzz

)
/�], (2.60)

Fig. 2.4 The Dirac cone of
the surface states in
momentum space
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where

Ψ 0
+ =

⎛
⎜⎜⎜⎜⎝

cos θ
2 sgn(B)

−i sin θ
2 sgn(B)

sin θ
2

i cos θ
2

⎞
⎟⎟⎟⎟⎠ (2.61)

and

Ψ 0
− =

⎛
⎜⎜⎜⎜⎝

sin θ
2 sgn(B)

i cos θ
2 sgn(B)

− cos θ
2

i sin θ
2

⎞
⎟⎟⎟⎟⎠ (2.62)

with the dispersion relation εp,± = ±vpsgn(B). tan θ = py/pz . The penetration
depth becomes p dependent,

ξ−1
± = v

2 |B| �
(
1 ±

√
1 − 4mB + 4B2 p2/�2

)
. (2.63)

2.5.4 Generalization to Higher-Dimensional Topological
Insulators

The solution can be generalized to higher-dimensional system. We conclude that
there is always a (d-1)-dimensional surface state in the d-dimensional modified Dirac
equation when mB > 0.

2.6 Summary

From the solutions of the modified Dirac equation, we found the following conclu-
sions under the condition of mB > 0,

• in one dimension, there exists a bound state of zero energy near the end;
• in two dimensions, there exists solution of a pair of helical edge states near the
edge;

• in three dimensions, there exists solution of surface states near the surface; and
• in higher dimensions, there always exists a higher dimensional boundary states.

From the solutions of the bound states near the boundary and the calculation of the
Z2 index, we conclude that the modified Dirac equation can provide a description of
a large class of topological insulators from one to higher dimensions.
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2.7 Further Reading

• P.A.M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon, 1982).
• J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (MaGraw-Hill Inc.,
1964).

• S.Q. Shen, W.Y. Shan, H.Z. Lu, Topological insulator and the Dirac equation.
SPIN 01, 33 (2011).
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