Contents

1 Introduction to Quantum Dots ... 1
 1.1 Physics of Zero-Dimensional Structures 1
 1.2 Electronic Properties of Quantum Dots 2
 1.3 Fabrication of Quantum Dots ... 4
 1.4 Electronic Spectra of Self-assembled QDs 5
 1.5 Disadvantages of Self-assembled QDs 6
 1.6 Methods for Improving QD Characteristics 7
 1.6.1 Different In-Situ and Ex-Situ Techniques for Improving
 QD Characteristics ... 7
 1.6.2 Importance of Capping Layers for Improving QD
 Characteristics ... 8
 1.7 Summary ... 9
References .. 10

2 Low-Energy Ion Implantation Over Single-Layer InAs/GaAs
 Quantum Dots ... 13
 2.1 Motivation Behind Ion Implantation Study 13
 2.2 Scope of the Present Study .. 14
 2.3 Growth of Single-Layer InAs/GaAs QDs 15
 2.4 Ion Implantation and Post-Growth Experiments on QDs 16
 2.5 Results and Discussion ... 16
 2.5.1 Structural, Material and Optical Properties of S⁻
 Ion-Implanted InAs/GaAs QDs 16
 2.5.2 Structural, Material and Optical Properties of H⁻
 Ion-Implanted InAs/GaAs QDs 20
 2.6 Conclusions Obtained from the Results of Heavy and Light
 Ion Implantation on InAs/GaAs QDs 24
References ... 25
3 Optimizations for Quaternary Alloy (InAlGaAs)-Capped InAs/GaAs Multilayer Quantum Dots

3.1 Motivation Behind the Study 28
3.2 Importance of Multilayer QDs 28
3.3 Growth of Different Quaternary Alloy-Capped Multilayer InAs/GaAs QDs .. 28
3.4 Post-Growth Experiments Performed on MQDs 30
3.5 Results and Discussion 30
3.5.1 Effects of Variation in Growth Rate of QDs in InAs/GaAs MQD System 31
3.5.2 Impact of Variation in Quaternary Capping Thickness in InAs/GaAs MQD System 33
3.5.3 Effects of Variations in Seed QD Monolayer Coverage for Quaternary Alloy-Capped InAs/GaAs MQDs 33
3.5.4 Effects of Rapid Thermal Annealing (Ex-Situ) on Quaternary Alloy-Capped InAs/GaAs MQDs 34
3.6 Significant Results of Study of Quaternary Alloy-Capped InAs/GaAs MQDs 38

References .. 39

4 Effects of Low Energy Light Ion (H\(^{-}\)) Implantations on Quaternary-Alloy-Capped InAs/GaAs Quantum Dot Infrared Photodetectors 41

4.1 Introduction: Basic Operation of Intersubband Detectors 41
4.2 Advantages of QDIPs 42
4.3 Previously Reported Results on In(Ga)As/GaAs QDIPs 43
4.4 Growth of Quaternary Alloy-Capped InAs/GaAs QDIPs 44
4.5 Optimization of H\(^{-}\) Ion Fluence and Implantation 45
4.6 Fabrication of Mesa-Shaped Single-Pixel Devices on Implanted Samples .. 46
4.7 Different Characterizations Performed for Implanted QDIPs 50
4.8 Results and Discussion 50
4.8.1 Optical and Structural Properties of H\(^{-}\) Ion-Implanted InAs/GaAs QDIPs 50
4.8.2 Electrical Properties of H\(^{-}\) Ion-Implanted InAs/GaAs QDIPs ... 52
4.9 Significant Results from H\(^{-}\) Ion-Implanted InAs/GaAs QDIPs and Conclusions 55

References .. 55

5 Effects of Low-Energy Light Ion (H\(^{-}\)) Implantation on Quaternary-Alloy-Capped InGaAs/GaAs Quantum Dot Infrared Photodetectors 57

5.1 Scope of the Study 57
5.2 Growth of Quaternary-Alloy-Capped InGaAs/GaAs QDIPs 58
5.3 Ion Implantation, Device Fabrication and Different Characterizations for H^- Ion-Implanted InGaAs/GaAs QDIPs 59
5.4 Results and Discussion 60
 5.4.1 Optical Properties of H^- Ion-Implanted InGaAs/GaAs QDIPs .. 60
 5.4.2 Electrical Properties of H^- Ion-Implanted InGaAs/GaAs QDIPs 60
5.5 Significant Results from H^- Ion-Implanted InGaAs/GaAs QDIPs and Conclusions 63
References ... 64
Impact of Ion Implantation on Quantum Dot Heterostructures and Devices
Mandal, A.; Chakrabarti, S.
2017, XXIII, 64 p. 53 illus., 32 illus. in color., Hardcover
ISBN: 978-981-10-4333-8