PART I MODELING

1 INTRODUCTION ... 3
 1.1 Vibration Tests .. 5
 1.1.1 Free Vibration Test 6
 1.1.2 Forced Vibration Test 7
 1.1.3 Ambient Vibration Test 8
 1.2 Uncertainties .. 9
 1.2.1 Variability and Identification Uncertainty 9
 1.2.2 Sources of Identification Uncertainty 10
 1.3 OMA Methods 10
 1.4 Non-Bayesian Approach 11
 1.4.1 Eliminating Random Response 12
 1.4.2 Exploiting Statistics 12
 1.4.3 Identification Uncertainty 14
 1.5 Bayesian Approach 15
 1.5.1 Philosophy 15
 1.5.2 Posterior Distribution and Statistics 16
 1.5.3 Computing Posterior Statistics 17
 1.5.4 Formulations and Algorithms 17
 1.5.5 Maximum Likelihood Estimation 18
 1.5.6 Drawbacks and Limitations 18
 1.6 Overview of This Book 19
 1.6.1 Modeling 20
 1.6.2 Inference 20
 1.6.3 Algorithms 21
 1.6.4 Uncertainty Laws 21
 1.7 How to Use This Book 22
 1.7.1 Student 22
 1.7.2 Researcher 24
2 Spectral Analysis of Deterministic Process .. 29
 2.1 Periodic Process (Fourier Series) ... 30
 2.1.1 Complex Exponential Form 32
 2.1.2 Parseval Equality .. 34
 2.2 Non-periodic Process (Fourier Transform) 35
 2.2.1 From Fourier Series to Fourier Transform 35
 2.2.2 Properties of Fourier Transform 37
 2.2.3 Dirac Delta Function .. 38
 2.2.4 Parseval Equality ... 38
 2.3 Discrete-Time Approximation with FFT 39
 2.3.1 Fast Fourier Transform 40
 2.3.2 Approximating Fourier Transform and Fourier Series 42
 2.3.3 Parseval Equality ... 43
 2.4 Distortions in Fourier Series .. 43
 2.4.1 Nyquist Frequency .. 44
 2.4.2 Aliasing .. 44
 2.4.3 Leakage .. 46
 2.5 Distortions in Fourier Transform .. 49
 2.6 Summary of FFT Approximations .. 50
 2.7 Summary of Fourier Formulas, Units and Conventions 50
 2.7.1 Multiplier in Fourier Transform 50
 2.8 Connecting Theory with Matlab .. 53
 2.9 FFT Algorithm .. 54
 2.9.1 Basic Idea .. 55
 2.9.2 Computational Effort .. 56
 References .. 57

3 Structural Dynamics and Modal Testing .. 59
 3.1 SDOF Dynamics ... 60
 3.1.1 Natural Frequency ... 61
 3.1.2 Damping Ratio ... 63
 3.1.3 Damped Free Vibration 63
 3.1.4 Logarithmic Decrement Method 67
 3.1.5 Harmonic Excitation ... 68
 3.1.6 Simplifying Algebra with Complex Number 71
 3.1.7 Dynamic Amplification 72
 3.1.8 Half-Power Bandwidth Method 74
 3.1.9 Principle of Superposition 77
 3.1.10 Periodic Excitation .. 78
6 Measurement Basics

6.1 Data Acquisition Process ... 205
6.2 Channel Noise ... 206
6.3 Sensor/Hardware Noise ... 207
6.4 Sensor Principle .. 209
6.5 Aliasing ... 212
6.6 Quantization Error .. 213
 6.6.1 Statistical Properties 215
 6.6.2 Power Spectral Density 215
6.7 Synchronization ... 216
6.8 Channel Noise Calibration ... 218
 6.8.1 Base Isolation ... 219
 6.8.2 Huddle Test ... 220
 6.8.3 Three Channel Analysis 222

References .. 224

7 Ambient Data Modeling and Analysis

7.1 Resonance Band Characteristics 226
 7.1.1 Single Mode .. 227
 7.1.2 Multi-mode ... 228
7.2 PSD Spectrum ... 228
 7.2.1 Procedure .. 229
7.3 Singular Value Spectrum .. 231
 7.3.1 Single Mode .. 232
 7.3.2 Multi-mode ... 234
7.4 Illustration with Field Data 237
 7.4.1 Time Histories ... 238
 7.4.2 Sample PSD (No Averaging) 238
 7.4.3 Sample PSD (Averaged) 239
 7.4.4 Singular Value Spectrum 240
7.5 Asynchronous Data .. 241
 7.5.1 Two Measurement Groups 242
 7.5.2 Multiple Measurement Groups 247
7.6 Microtremor Data .. 249
 7.6.1 Background Seismic Noise 249
 7.6.2 Site Amplification and H/V Spectrum 252
7.7 Simulation of Ambient Data 255
 7.7.1 Gaussian Scalar Process 255
 7.7.2 Gaussian Vector Process 258
 7.7.3 Quantifying Noise Level 260

References .. 261
Part II Inference

8 Bayesian Inference

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Bayes’ Theorem</td>
<td>266</td>
</tr>
<tr>
<td>8.2</td>
<td>Updating Knowledge Using Data</td>
<td>267</td>
</tr>
<tr>
<td>8.3</td>
<td>System Identification Framework</td>
<td>268</td>
</tr>
<tr>
<td>8.4</td>
<td>Identifiability</td>
<td>268</td>
</tr>
<tr>
<td>8.5</td>
<td>Globally Identifiable Problems</td>
<td>274</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Quality of Gaussian Approximation</td>
<td>275</td>
</tr>
<tr>
<td>8.6</td>
<td>Locally Identifiable Problems</td>
<td>283</td>
</tr>
<tr>
<td>8.7</td>
<td>Unidentifiable Problems</td>
<td>284</td>
</tr>
<tr>
<td>8.8</td>
<td>Model Class Selection</td>
<td>285</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Comparing Model Classes with Evidence</td>
<td>285</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Model Trade-off</td>
<td>286</td>
</tr>
</tbody>
</table>

9 Classical Statistical Inference

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Statistical Estimators</td>
<td>293</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Quality Statistics</td>
<td>293</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Bias and Convergence</td>
<td>294</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Empirical Statistics</td>
<td>294</td>
</tr>
<tr>
<td>9.2</td>
<td>Maximum Likelihood Estimator</td>
<td>295</td>
</tr>
<tr>
<td>9.3</td>
<td>Cramér-Rao Bound</td>
<td>300</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Easier but Looser Bounds</td>
<td>307</td>
</tr>
<tr>
<td>9.3.2</td>
<td>General Form</td>
<td>310</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Derivation</td>
<td>310</td>
</tr>
<tr>
<td>9.4</td>
<td>Fisher Information Matrix for Gaussian Data</td>
<td>312</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Real Gaussian</td>
<td>312</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Complex Gaussian</td>
<td>315</td>
</tr>
<tr>
<td>9.5</td>
<td>Asymptotic Properties of ML Estimator</td>
<td>316</td>
</tr>
<tr>
<td>9.6</td>
<td>Comparison with Bayesian Inference</td>
<td>319</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Philosophical Perspectives</td>
<td>319</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Maximum Likelihood Estimator</td>
<td>320</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Cramér-Rao Bound and Uncertainty Law</td>
<td>321</td>
</tr>
</tbody>
</table>

10 Bayesian OMA Formulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Single Setup Data</td>
<td>325</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Likelihood Function</td>
<td>326</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Single Mode</td>
<td>329</td>
</tr>
<tr>
<td>10.2</td>
<td>Remarks to Formulation</td>
<td>329</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Complex Gaussian FFT</td>
<td>330</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Selected Frequency Band</td>
<td>330</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Prediction Error Model</td>
<td>331</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Measurement Type</td>
<td>332</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Mode Shape Scaling</td>
<td>333</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Leakage</td>
<td>335</td>
</tr>
<tr>
<td>10.3</td>
<td>Multi-setup Data</td>
<td>336</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Global and Local Mode Shape</td>
<td>337</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Reference DOFs</td>
<td>337</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Parameters in Different Setups</td>
<td>338</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Likelihood Function</td>
<td>339</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Single Mode</td>
<td>340</td>
</tr>
<tr>
<td>10.4</td>
<td>Asynchronous Data</td>
<td>341</td>
</tr>
<tr>
<td>10.4.1</td>
<td>PSD Matrix</td>
<td>341</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Single Mode</td>
<td>343</td>
</tr>
</tbody>
</table>

11 Bayesian OMA Computation | 345 |
11.1	Posterior Most Probable Value	346
11.2	Posterior Covariance Matrix	348
11.2.1	Mapping with Free Parameters	348
11.2.2	Transformation of Covariance Matrix	349
11.2.3	Hessian of Composite Function	349
11.2.4	Transformation Invariance	351
11.2.5	Constraint Singularity	352
11.2.6	Pseudo-inverse	353
11.2.7	Singular Vector Formula	355
11.2.8	Dimensionless Hessian	356
11.3	Mode Shape Uncertainty	359
11.3.1	Norm Constraint Singularity	360
11.3.2	Stochastic Representation	360
11.3.3	Expected MAC and Mode Shape c.o.v	361

Part III Algorithms | 365 |
12 Single Mode Problem	366	
12.1	Alternative Form of NLLF	368
12.2	Algorithm for MPV	368
12.3	High s/n Asymptotics of MPV	368
12.3.1	Initial Guess of MPV	370
12.4	Posterior Covariance Matrix	370
12.4.1	General Expressions	371
12.4.2	Condensed Expressions	372
12.5	Synthetic Data Examples	374
12.6	Laboratory/Field Data Examples	381

References | 390 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Multi-mode Problem</td>
<td>391</td>
</tr>
<tr>
<td>13.1</td>
<td>Mode Shape Subspace</td>
<td>393</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Orthonormal Basis Representation</td>
<td>393</td>
</tr>
<tr>
<td>13.2</td>
<td>Alternative Form of NLLF</td>
<td>394</td>
</tr>
<tr>
<td>13.3</td>
<td>Most Probable Mode Shape Basis</td>
<td>396</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Hyper Angle Representation</td>
<td>396</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Rotation Matrix</td>
<td>397</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Newton Iteration</td>
<td>398</td>
</tr>
<tr>
<td>13.4</td>
<td>Most Probable Spectral Parameters</td>
<td>402</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Parameterizing Structured Matrices</td>
<td>402</td>
</tr>
<tr>
<td>13.5</td>
<td>Algorithm for MPV</td>
<td>403</td>
</tr>
<tr>
<td>13.6</td>
<td>High s/n Asymptotics of MPV</td>
<td>404</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Initial Guess of MPV</td>
<td>405</td>
</tr>
<tr>
<td>13.7</td>
<td>Posterior Covariance Matrix</td>
<td>405</td>
</tr>
<tr>
<td>13.7.1</td>
<td>General Expressions</td>
<td>407</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Condensed Expressions</td>
<td>408</td>
</tr>
<tr>
<td>13.8</td>
<td>Illustrative Examples</td>
<td>413</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>418</td>
</tr>
<tr>
<td>14</td>
<td>Multi-setup Problem</td>
<td>419</td>
</tr>
<tr>
<td>14.1</td>
<td>Local Least Squares</td>
<td>420</td>
</tr>
<tr>
<td>14.2</td>
<td>Global Least Squares</td>
<td>422</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Partial Solutions</td>
<td>423</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Limiting Behavior of Solution</td>
<td>424</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Iterative Algorithm</td>
<td>425</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Reference Condensation</td>
<td>426</td>
</tr>
<tr>
<td>14.3</td>
<td>Bayesian Method</td>
<td>427</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Alternative Form of NLLF</td>
<td>428</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Partial MPV of Global Mode Shape</td>
<td>430</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Algorithm for MPV</td>
<td>431</td>
</tr>
<tr>
<td>14.3.4</td>
<td>High s/n Asymptotic MPV</td>
<td>431</td>
</tr>
<tr>
<td>14.3.5</td>
<td>Initial Guess</td>
<td>433</td>
</tr>
<tr>
<td>14.3.6</td>
<td>Asymptotic Weight for Global Least Squares</td>
<td>433</td>
</tr>
<tr>
<td>14.3.7</td>
<td>Posterior Covariance Matrix</td>
<td>434</td>
</tr>
<tr>
<td>14.4</td>
<td>Representative Statistics</td>
<td>437</td>
</tr>
<tr>
<td>14.5</td>
<td>Field Applications</td>
<td>438</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>

Part IV Uncertainty Laws

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Managing Identification Uncertainties</td>
<td>455</td>
</tr>
<tr>
<td>15.1</td>
<td>Context and Key Formulas</td>
<td>456</td>
</tr>
<tr>
<td>15.2</td>
<td>Understanding Uncertainty Laws</td>
<td>460</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Data Length and Usable Bandwidth</td>
<td>461</td>
</tr>
</tbody>
</table>
Operational Modal Analysis
Modeling, Bayesian Inference, Uncertainty Laws
Au, S.-K.
2017, XXIII, 542 p. 158 illus., 28 illus. in color., Hardcover
ISBN: 978-981-10-4117-4