Preface

Energy demand has been rising remarkably due to increasing population and urbanization. Global economy and society are significantly dependent on the energy availability because it touches every facet of human life and activities. Transportation and power generation are major examples of the energy. Without the transportation by millions of personalized and mass transport vehicles and availability of 24×7 power, human civilization would not have attained contemporary living standards.

An international workshop, 3rd ISEES Workshop on “Sustainable Energy, Environment & Safety with Railway Centric Theme”, was held at Research Designs and Standards Organisation (RDSO), Lucknow, India during December 21–23, 2015 under the aegis of International Society for Energy, Environment and Sustainability (ISEES). This workshop provided a platform for discussions between eminent scientists and engineers from various countries including India, USA, South Korea, Thailand, and Austria. In this workshop, eminent speakers presented their views related to different aspects of combustion, and alternative energy resource for sustainable development and cleaner environment. This workshop laid the roadmap for technology development, opportunities and challenges in this technology domain. At this stage of technology development, transportation and power generation systems are dependent on IC engines and gas turbines to a great extent. Fundamentals of combustion and pollutant formation are coupled to each other and need to be explored in order to design energy-efficient and environment-friendly combustion systems for power generation sector, and transport sector. Besides changing the existing design of combustion systems, application of different alternative fuels such as biofuels, other renewable fuels, alcohols and synthetic fuels needs to be explored for sustainable global development. Fundamental and applied studies can be carried out using the state-of-the-art optical diagnostic systems and advanced numerical models for turbulent combustion. Such fundamental investigations would result in optimized design of these combustion systems, which would be more efficient and environment friendly.

The editors would like to express their sincere gratitude to the authors for submitting their high quality work in a timely manner and revising it their
contributions appropriately at a short notice. We would like to express our special thanks to Prof. Vaibhav Arghode, Prof. Ashoke De, Prof. Sathesh Mariappan, Prof. Atul Dhar, Prof. Dhananjay Kumar Srivastava, Prof. Rakesh Kumar Maurya, Prof. Dr. Malay Karmakar, Prof. Swarnendu Sen, Prof. Swetaprovo Chaudhuri, Prof. Sreedhara Seshadri, Prof. Achintya Mukhopadhyay, Prof. P.K. Bose, Prof. Amtava Datta, Prof. Thierry Poinso, Prof. R.P. Gakkhar, Prof. Sudarshan Kumar, Prof. William Roberts and Dr. Akhilendra Pratap Singh, who reviewed various chapters of the monograph and provided their valuable suggestions to improve the submitted manuscripts, which helped us bring the monograph in the present form.

We acknowledge the support received from various funding agencies and organizations for successful conduct of the ISEES workshop, where these monographs germinated. These include Department of Science and Technology, Government of India (Special thanks to Dr. Sanjay Bajpai); RITES Ltd., India (Special thanks to Sh. Pradeep Gupta); Office of Naval Research Global, Singapore (Special thanks to Dr. Ramesh Kolar); TSI, India (Special thanks to Dr. Deepak Sharma); Caterpillar India; AVL India; Dynomerk Controls, India (Special thanks to Sh. Kishore Raut); CEI Softwares, India; ESI Group, Pune; BHEL India; and Bosch India.

This monograph is intended for combustion practitioners and we hope that the book would be of great interest to the professionals, postgraduate students involved in advanced combustion techniques, experimentation and numerical simulation of combustion and environmental aspects. The main objective of this monograph is to promote a better and more accurate understanding of combustion in IC engines and gas turbines, besides recent advances and challenges in clean combustion systems and technology.

Kanpur, India
Avinash Kumar Agarwal
Kanpur, India
Santanu De
Mohali, India
Ashok Pandey
Kanpur, India
Akhilendra Pratap Singh
Combustion for Power Generation and Transportation Technology, Challenges and Prospects
Agarwal, A.K.; De, S.; Pandey, A.; Singh, A.P. (Eds.)
2017, X, 451 p. 240 illus., 178 illus. in color., Hardcover
ISBN: 978-981-10-3784-9